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1 Technical aspects of energy 

1.1 Conservation of energy (the 1st law of thermodynamics) 

Energy is discussed and brought up at length in everyday life, but it is seldom accurately 

defined. Given the title of the course, we should probably rigorously define it: Energy is 

simply a certain quantity that has been observed as remaining constant during 

physical, chemical and/or biological changes.  

Based on this observation (or I should say, observations made over the course of centuries), 

a postulate was made that energy is conserved. From this and one other postulate (which 

has to do with entropy and that we shall bring up shortly), an entire mathematical construct 

was built, which we know as thermodynamics. For this reason, the conservation of energy 

is often referred to as the first law of thermodynamics. 

 

If energy is conserved, that means that the universe’s energy is constant. For practical 

purposes and for studying a specific “closed” system (i.e. no exit/entry of matter from/to 

the system), the universe can be defined as a closed system + surroundings. In such a case, 

the first law of thermodynamics can be stated as: 

 

∆𝐸 = 𝑄 + 𝑊 [closed system] (1.1) 

With: 

∆E= Change in energy content of the system. 

Q: heat transferred to the system from its surroundings. 

W: amount of work done on the system by its surroundings1. 

 
1 In many textbooks work is defined as the amount of work done on the surroundings by the systems. Then 

1.1 would become ∆𝐸 = 𝑄 − 𝑊. Both are correct provided that work is defined consistently throughout. 
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For practical reasons let’s rewrite Equation 1.1 by subdividing E and W into different 

components: 

 

∆𝐸 = ∆𝑈 + ∆𝐸𝑝 + ∆𝐸𝑘 =  𝑄 + 𝑊𝑠ℎ − 𝑊𝑃𝑉   [closed system] (1.2) 

Where: 

∆U= Change in internal energy (this is changed by modifying the temperature, changing 

the phase, modifying the molecular architectures, changing the atomic structures, etc. of 

the system) 

∆Ep: Change in potential energy (this is changed by shifting the system location in a force 

field) 

∆Ek: Change in kinetic energy (this is changed by changing the system’s velocity) 

WPV: Pressure-Volume work or PV work. This type of work arises that any system has at 

least some volume, and to achieve that volume it has to move the surroundings out of the 

way. Similarly, if the system’s volume changes, it either gives its surroundings volume by 

shrinking (i.e. receives work) or shoves the surroundings out of the way (performs work). 

Since for a positive dV the system performs work, it is convenient to add a negative sign 

in front of WPV (see eq. 1.4). 

Wsh: Shaft work, which we define as any work that is not PV work (this could include 

rotating a shaft but also electrical work, etc.) 

 

In most cases, it is not practical to take into account Ep and Ek so let’s forget about them 

for now (but remember that in some cases they intervene!!). This leads 1.2 to become the 

closed system shown in Fig. 1.1: 

∆𝑈 =  𝑄 + 𝑊𝑠ℎ − 𝑊𝑃𝑉  [closed system] (1.3) 
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Fig. 1.1 Closed system 

 

1.2 PV work and enthalpy 

Let’s expand on our definition of PV work (WPV), which is the work done by shoving back 

a volume V=V1-V2 at a pressure P: 

𝑊𝑃𝑉 = ∫ 𝑃𝑑𝑉
𝑉2

𝑉1
 (1.4) 

To solve this integral for non-constant pressures, one needs an equation that relates the 

pressure P to the system’s temperature T and volume V.  Such an equation is called an 

equation of state (EOS). The most well known equation of state is of course the ideal gas 

law: 

𝑃𝑉 = 𝑛𝑅𝑇 or 𝑃 = (
𝑛

𝑉
)𝑅𝑇 (1.5) 

Other EOSs include the Van der Waals EOS, which performs markedly better than the 

ideal gas law for real systems. We also commonly use more complex EOSs such as Peng 

Robinson or Soave-Redlich-Kwong. 

 

It is sometimes useful to consider that the total energy of a system is not only its internal 

energy (U) but also the energy it is credited with for having a volume V (i.e., some energy 

had to be provided for our system to shove the surroundings out of the way). At constant 

pressure, this energy is: 

𝑊𝑃𝑉 = ∫ 𝑃𝑑𝑉
𝑉

0
= 𝑃𝑉 (1.6) 
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To account for this energy, it is useful to define enthalpy (H), which includes PV: 

𝐻 = 𝑈 + 𝑃𝑉 (1.7) 

In systems at constant pressure2, it is often useful to use enthalpy because you don’t have 

to worry about remembering to account for the work done to push back the atmosphere. 

Therefore, taking equations 1.3 and 1.6, we have for a closed system at constant 

pressure: 

∆𝑈 + 𝑊𝑃𝑉 = ∆𝑈 + 𝑃∆𝑉 = ∆𝐻 =  𝑄 + 𝑊𝑠ℎ  (1.8) 

Whereas for a closed system at constant volume (𝑊𝑃𝑉 = ∫ 𝑃𝑑𝑉 = 0), we have: 

∆𝑈 =  𝑄 + 𝑊𝑠ℎ (1.9) 

Therefore, for closed systems at constant volume it will be easier to track internal energy, 

whereas for closed systems at constant pressure, we will prefer enthalpy. 

 

1.3 Entropy and the second law of thermodynamics 

The first law of thermodynamics establishes the fact that you cannot create energy, which 

already places some limits on several important energetic processes. However, there are 

other limits that exist within practical systems that do not arise from the first law. An 

example of such a limit is the fact that heat flows from a hot to a cold source and not the 

other way around. These concepts are governed by entropy (S), which is often visualized 

as a measure of a systems disorder or inventory of random information. The second law 

states that disorder increases with time or at the very least remains constant. For an isolated 

system, the second law can be formulated as: 

 
2 This could include open systems such as boiling water or burning wood in a fireplace as well as 

continuous systems like a flow reactor. 
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∆𝑆𝑠𝑦𝑠𝑡𝑒𝑚 ≥ 0 [isolated system] (1.10) 

For a non-isolated system, the second law only requires that the total entropy of the system 

and its surroundings be equal to or greater than zero: 

∆𝑆𝑠𝑦𝑠𝑡𝑒𝑚 + ∆𝑆𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑠 ≥ 0 [non-isolated system] (1.11) 

 

Above, we presented ways to measure changes in internal energy (eq. 1.3) or changes in 

enthalpy (eq. 1.6). A similar calculation must be defined to measure entropy. Entropy is 

defined by the exchange in reversible heat Qrev during a state change: 

∆𝑆𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑆2 − 𝑆1 = ∫
𝑑𝑄𝑟𝑒𝑣

𝑇𝑆𝑦𝑠𝑡𝑒𝑚

𝑆2

𝑆1
 (1.12) 

Reversible heat (Qrev) is the heat received during a reversible process: a process where all 

mechanical energy changes occur reversibly (e.g. without any friction or energy 

dissipation) and where all heat is exchanged reversibly (eg. while maintaining equilibrium 

with the surroundings and keeping the system at a uniform temperature at all times). 

Because of the presence of reversible heat and temperature in equation 1.12, entropy has 

units of energy over temperature (e.g. J/K). Of course, reversible heat is a difficult quantity 

to measure because no real process occurs reversibly. However, entropy is a state function. 

Therefore, a change in entropy between state 1 and 2 is completely independent of the path 

taken (Fig 1.2). 

 

State 1 State 2 

irreversible 

reversible 

irreversible 

reversible 
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Fig. 1.2 Different paths may require different heat and work. 

Therefore, for every change from state 1 to state 2, there are an infinite number of paths 

both reversible and irreversible. Therefore, one can always find a reversible path to go from 

state 1 to 2, and the Qrev added during this path will allow us to calculate ∆S. 

 

To understand this distinction, consider the following example. We have 1 kg of perfectly 

isolated water with a stirrer. We start the stirrer and stir until we have produced 4184 J of 

shaft work. After we stop stirring, the water will no longer be moving, but the stirring 

energy will have dissipated irreversibly as heat into the water, heating it to 21°C. This is a 

completely irreversible process where no heat was added (Qirrev=0). However, we can get 

from state 1 (water at 20°C) to state 2 (water at 21°C) by reversibly heating the water with 

the same amount of energy as that used in the irreversible process. Therefore, Qrev=4184 

J.  

 

Fig. 1.3 An irreversible and reversible path to the same state. 

 

Because Qrev is dependent on the path taken (a path function) and is used to calculate S 

(a state function), it is usually necessary to calculate the evolution of the system and of its 

properties (i.e. V, P, T, etc.). How can we know such properties? Equations of state (EOSs) 
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can help us define one of these variables as a function of the other two. For this reason, 

EOSs such as those mentioned above (e.g. the ideal gas law in eq. 1.5) are sometimes 

necessary to calculate Qrev and ∆S.  

 

1.4 How generating work from heat can be described by entropy 

Why have we spent so much time talking about obscure state functions such as internal 

energy U or entropy S? As it turns out, these functions are essential for understanding how 

we obtain, transport and convert energy. An important example of such a conversion is the 

transformation of heat to work. This is the most important work-generating process, and is 

the basis for most transportation processes.  

 

The vast majority of work-generating processes are continuous, meaning that they stay or 

return frequently to the same state in a cyclical manner. The internal combustion engine is 

physically cyclical (i.e., its function involves distinct steps), whereas a plane reactor or gas 

turbine is mechanically continuous. However, from the standpoint of the fluid (i.e., the 

entity providing the work!), all these work-generating processes are cyclical.  

 

Again, cyclical indicates that you return to the same state. For this reason, we can use a 

state variable to describe our system. Since a state variable (let’s call it X) is independent 

of paths taken to and from that state, in a cyclical process, this state variable will always 

return to its original value (X0). For reasons that we will see in a second, it’s best to describe 

such a path using entropy. Recall our definition for entropy (below is a slightly modified 

version of Equation 1.12). 
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𝑑𝑆 =
𝑑𝑄𝑟𝑒𝑣

𝑇
 (1.13) 

 

Equation 1.13 is useful to determine the greatest amount of heat that we can extract from a 

given cyclic path. 

𝑑𝑄𝑟𝑒𝑣 = 𝑇𝑑𝑆 → 𝑄𝑟𝑒𝑣 = ∫ 𝑇 𝑑𝑆 (1.14) 

The integral on the right represents the area formed by T(S) on a T-S diagram, which for a 

cyclical process is represented on Fig. 1.4. 

 

Fig. 1.4 A thermodynamic cycle on a T-S diagram 

 

Now remember, this holds only for a reversible process (the best possible scenario). In an 

actual process, we will not recover all of this entropy as heat, but will lose it in some other 

way (loss of heat to the surroundings, temperature inhomogeneity in the system, etc.). 

Because of this: 

𝑑𝑆 >
𝑑𝑄𝑎𝑐𝑡𝑢𝑎𝑙

𝑇
→ 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 < ∫ 𝑇 𝑑𝑆 (1.14) 

S0 S 

T 

Qrev 

T0 
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Therefore, the actual amount of heat we can recover will always be smaller than the hashed 

area shown above. 

 

However, the first law always holds no matter what the process is, and for a cyclic process 

the first law becomes: 

∆𝑈 =  𝑄 + 𝑊 = 0 → 𝑄 = −𝑊    [cyclic process] (1.15) 

Remember, since internal energy U is a state function, it too (just like entropy) must come 

back to its initial value (∆𝑈 =  0 !). 

 

Therefore, for a cyclic reversible process, we have: 

𝑊𝑟𝑒𝑣 = − 𝑄𝑟𝑒𝑣 = − ∫ 𝑇 𝑑𝑆  (1.16) 

Since Qrev is equal the maximum amount of work that can be produced during a cyclic 

process (Eq. 1.14 and 1.15), the area on the T-S diagram also represents the maximum 

amount of work obtainable during a cycle. 

 

To calculate the actual work, recall that 1.15 is always true for a cyclic process. Therefore: 

𝑊𝑎𝑐𝑡𝑢𝑎𝑙 = − 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 < − ∫ 𝑇 𝑑𝑆  (1.17) 

 

1.5 The Carnot engine 

Above, we have discussed how a cyclical process can produce work and be represented on 

T-S diagram. In addition, we saw that the area covered on this T-S diagram corresponded 

to the reversible work (i.e. maximum work) that can be produced during a cycle. Let’s 

think more precisely about what such a cycle would look like. In systems that convert heat 
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to work, we have a heat source at a high temperature (TH). Generally, we also need to cool 

our system to close the cycle and recover our initial state (think of exhaust gases being 

cooled in the atmosphere, or the cooling water in a Rankine cycle). In other words, we can 

represent any heat-to-work conversion system as shown in Fig. 1.5 A. 

 

Fig. 1.5 (A) a simplified heat engine and (B) a random T-S cycle for this engine 

 

Such a system can exchange temperature with the hot and the cold source only if it finds 

itself in between the two. Knowing this, we can draw a random path cycle on the T-S 

diagram (Fig. 1.5 B). 

 

Now, the obvious question is the following: what is the maximum efficiency that could be 

obtained by a perfect heat engine operating between TH and TC? This is the question 

answered by Sadi Carnot when he developed the Carnot heat engine (the ideal heat engine). 

Efficiency (𝜂) is usually defined as the work obtained divided by the heat put in at high 

temperature: 

𝜂 =
𝑊

𝑄𝐻
  (1.18) 

TC 

TH 
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QC 
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The maximum amount of work will be obtained for the path that maximizes the hashed 

area shown in Fig. 1.5 B. Geometrically, we can see this corresponds to a square (Fig. 1.6 

A). This path describes the Carnot heat engine!  

 

Fig. 1.6 The Carnot heat engine cycle. (A) T-S diagram and (B) P-V diagram. Note that 

the shaded area on the PV diagram represents the total work done by the system as well. 

 

The steps in this cycle are: 

Step AB: Add heat to expand the gas isothermally at TH, while doing work. 

Step BC: Expand the gas adiabatically until the gas reaches TC, while doing more work. 

Step CD: Remove heat to compress the gas isothermally at TC, while providing work. 

Step DA: Compress the gas adiabatically until the gas temperature rises to TH, while 

providing the necessary work. 

 

To calculate the work and heat that is given/produced at each stage, we need to use the 

properties of the ideal gas law. 

 

Reminder: Thermodynamics of ideal gases 
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For ideal gases  

𝑈 = 𝑓(𝑇) ≠ 𝑓(𝑃, 𝑉) (1.19) 

This was demonstrated by the famous joule experiment, and by definition all ideal gases 

follow Joule’s law: 

𝑑𝑈 = 𝐶𝑉𝑑𝑇 → ∆𝑈 = 𝐶𝑉∆𝑇 (1.20) 

where CV is the volumetric heat capacity (heat capacity at constant volume), which is 

constant for ideal gases. Similarly, and by definition, we have: 

∆𝐻 = 𝐶𝑃∆𝑇 (1.21) 

From equation 1.7, we have (for one mole of gas): 

∆𝑈 = 𝐶𝑉∆𝑇 = ∆𝐻 − ∆(𝑃𝑉) = 𝐶𝑃∆𝑇 − ∆(𝑅𝑇) (1.22) 

Which leads to:  

𝐶𝑃 − 𝐶𝑉 = 𝑅 (1.23) 

For ideal gases, it is also useful to define k: 

𝐶𝑃/𝐶𝑉 = 𝑘 = 1 + 𝑅/𝐶𝑉 (1.24) 

For an adiabatic process, we have: 

𝑑𝑈 = 𝐶𝑉𝑑𝑇 = 𝑑𝑊 = −𝑝𝑑𝑉 (1.25)  

If we separate and integrate we get: 

ln (
𝑇2

𝑇1
) = −

𝑅

𝐶𝑉
ln (

𝑉2

𝑉1
) = −(𝑘 − 1) ln (

𝑉2

𝑉1
) (1.26)  

Therefore, for an adiabatic step, using 1.26 and 1.5, we can quite easily derive: 

(
𝑇2

𝑇1
) = (

𝑉1

𝑉2
)

𝑘−1
 (1.27)  

(
𝑇2

𝑇1
) = (

𝑃2

𝑃1
)

𝑘−1

𝑘
 (1.28) 

(
𝑃2

𝑃1
) = (

𝑉1

𝑉2
)

𝑘
 (1.29) 
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With these relations we can pursue our discussion of the Carnot Engine and calculate the 

heat and work that occurs at each step: 

 

Step AB: Isothermal, closed system → 𝑄𝐴𝐵 = −𝑊𝐴𝐵 = 𝑅𝑇𝐻  𝑙𝑛(
𝑃𝐴

𝑃𝐵
) 

Step BC: Adiabatic expansion: 𝑈 = 𝑊 = 𝐶𝑉(𝑇𝐶 − 𝑇𝐻) 

Step CD: Isothermal, closed system → 𝑄𝐶𝐷 = −𝑊𝐶𝐷 = 𝑅𝑇𝐶  𝑙𝑛(
𝑃𝐶

𝑃𝐷
) 

Step DA: Adiabatic compression: 𝑈 = 𝑊 = 𝐶𝑉(𝑇𝐻 − 𝑇𝐶) 

To calculate efficiency (𝜂), we need to determine the total amount of work obtained and 

the heat from the hot source added to the system: 

𝜂 =
−𝑊𝑡𝑜𝑡

𝑄𝐻
=

−(𝑊𝐴𝐵+𝑊𝐵𝐶+𝑊𝐶𝐷+𝑊𝐷𝐴)

𝑄𝐻
= 

−𝑊𝐴𝐵−𝑊𝐶𝐷

𝑄𝐴𝐵
=

𝑅𝑇𝐻 𝑙𝑛(
𝑃𝐴
𝑃𝐵

)−𝑅𝑇𝐶 𝑙𝑛(
𝑃𝐷
𝑃𝐶

)

𝑅𝑇𝐻 𝑙𝑛(
𝑃𝐴
𝑃𝐵

)
 (1.30) 

As a side note, you will notice that the sum of all the work terms corresponds to the integral 

of the path on the cycle’s PV diagram (Fig. 1.6B). We add a minus sign in front of the total 

work done by the system (Wtot) to correct for the fact that from the system’s reference, this 

work will be “lost” and therefore be negative. From eq. 1.28, we know that for an adiabatic 

reversible process between the same temperatures, the ratios of the initial and final 

pressures are constant (PA/PB= PD/PC): 

𝜂 =
𝑇𝐻−𝑇𝐶 

𝑇𝐻
 (1.31) 

This is an important result, because it means that for most practical engines, the theoretical 

efficiency is not 100%! To approach 100%, we have to maximize the difference between 

TH and TC. However, for real systems TC is never lower than 240 K, and is usually around 

290 K, which limits any possibilities that are available. 
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From the Carnot cycle, we can quite easily deduce the ideal behavior of a heat pump. Heat 

pumps consume work and bring heat to a hot source. Heat pumps are being used more and 

more to heat houses, but their most common occurrences are in cooling systems such as 

refrigerators and air conditioners. If you think about it, an ideal heat pump is simply a 

Carnot cycle run in reverse (Fig. 1.7). 

 

Fig. 1.7 (A) Representation of an ideal heat pump. (B) As a T-S cycle. 

We can calculate the efficiency, which is usually referred to as the coefficient of 

performance or COP, of a heat pump by analogy to the regular Carnot cycle. 

𝐶𝑂𝑃𝑊 =
−𝑄𝐻

𝑊
=

−𝑄𝐵𝐴

𝑊𝐵𝐴+𝑊𝐶𝐵+𝑊𝐷𝐶+𝑊𝐴𝐷
= 

−𝑅𝑇𝐻 𝑙𝑛(
𝑃𝐵
𝑃𝐴

)

−𝑅𝑇𝐻 𝑙𝑛(
𝑃𝐵
𝑃𝐴

)−𝑅𝑇𝐶 𝑙𝑛(
𝑃𝐷
𝑃𝐶

)
=

𝑇𝐻

𝑇𝐻−𝑇𝐶
 (1.32) 

The subscript (W) indicates winter as a heat pump is usually run as such in the winter. In 

the summer, the pump is generally reversed and becomes an air conditioner. In this case, 

COPS is based on QC: 

𝐶𝑂𝑃𝑆 =
𝑄𝐷𝐶

𝑊𝐵𝐴+𝑊𝐶𝐵+𝑊𝐷𝐶+𝑊𝐴𝐷
= 

𝑅𝑇𝐻 𝑙𝑛(
𝑃𝐷
𝑃𝐶

)

−𝑅𝑇𝐻 𝑙𝑛(
𝑃𝐴
𝑃𝐵

)−𝑅𝑇𝐶 𝑙𝑛(
𝑃𝐷
𝑃𝐶

)
=

𝑇𝐶

𝑇𝐻−𝑇𝐶
  (1.33) 
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1.6 Real work heat engines 

The Rankine cycle 

At this point we have explored the efficiency of an idealized heat-to-work or work-to-heat 

system. What about real systems? Well we could try to operate this with water and steam 

(a common and cheap fluid). If we try to closely replicate what is seen in Fig. 1.6 (A), then 

we must operate in the two-phase region, as it is the only way to provide heat to the system 

at constant temperature. Such a system, along with the phase boundary, is shown in Fig. 

1.8. 

 

Fig. 1.8 Carnot Cycle in a 2-phase system. 

However, in practice, this type of system would imply pumping and expanding a two-phase 

system as they further change phases. However, mechanical problems that include 

cavitation in pumps and erosion of turbine blades make it impractical to operate these two-

unit operations in the two-phase zone. Therefore, we are forced to extend the system to 

make sure the pumping and expansion are done outside the two-phase boundary. Therefore, 

water is completely condensed before pumping and steam is superheated (to much higher 
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than the boiling temperature) to ensure that it will not condense during expansion (Fig. 

1.9). The resulting system is called a Rankine cycle. 

 

Path 1-2-3-4-5-6-1 represents the ideal Rankine cycle. For safety reasons, a real turbine is 

often run with a path closer to 1-2-3-4-5’-6’-1. This is to assure that the turbine operates 

well outside of the two-phase region. We can use enthalpy (assuming negligible kinetic 

and potential energy contributions) to calculate the efficiency of a Rankine steam cycle. 

For the ideal case, we have: 

𝜂 =
𝑄𝐻−𝑄𝐶

𝑄𝐻
=

(𝐻5−𝐻2)−(𝐻6−𝐻1)

(𝐻5−𝐻2)
  (1.34) 

We can neglect the energy it takes to compress a liquid, which is very small (H1≈H2), which 

leads to: 

𝜂 =
𝐻5−𝐻6

𝐻5−𝐻1
    or    𝜂 =

𝐻5′−𝐻6′

𝐻5′−𝐻1
 (a more realistic system) (1.35) 
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Fig. 1.10 A Rankine cycle and its corresponding TS cycle 

 

We can see that a Rankine cycle, even an ideal one, has an efficiency that is quite a bit 

lower than that of a Carnot engine. This can be improved on a little bit by using one or 

more reheat cycles (Fig. 1.11). This is especially helpful when one does not have access to 

a stream at a temperature at which to superheat the steam. 

QH 

QC 
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Fig. 1.11 A Rankine cycle with a single reheat cycle and its corresponding TS cycle 

 

The Rankine refrigeration cycle 

Like the Carnot cycle, the Rankine cycle can be run in reverse to form a refrigeration cycle 

or a heat pump. In this case, the physical constraints are slightly different. Let’s again begin 

by imagining the ideal Carnot case within a real fluid (path 1’-2’-3-4’). In practice, it is 

preferable to compress a pure gas than a gas liquid mixture, so we shift from 1’ to 1. 

Additionally, an adiabatic reversible expansion is not possible to replicate, so in practice 
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this is replaced by a simple expansion valve, which is not reversible and therefore leads to 

an increase in entropy (see pathway 3-4).  

 

Fig. 1.12 T-S diagram of a reversed Rankine Cycle and its representation for refrigerator. 

A more realistic overall pathway is therefore 1-2-3-4 with a COPRefrigeration efficiency of:  

𝐶𝑂𝑃𝑅𝑒𝑓𝑟𝑖𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
|𝑞𝑐|

|𝑊|
= 

ℎ1−ℎ4

ℎ2−ℎ1
  (1.36) 

For the analogous Rankine heat pump, we have: 

𝐶𝑂𝑃ℎ𝑒𝑎𝑡 𝑝𝑢𝑚𝑝 =
|𝑞ℎ|

|𝑊|
= 

ℎ2−ℎ3

ℎ2−ℎ1
  (1.37) 

 

 

QH 

QC 

QH 

QC 
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The Otto cycle: gasoline engines 

Rankine cycles are very useful to understand and calculate the efficiencies of generating 

electrical power from heat (e.g. processes in various power plants) as well as heat pumps 

and refrigeration cycles. However, they are not very well suited for describing combustion 

engines. There are several cycles that are each used to represent different engine types (e.g. 

the Otto cycle that describes a gasoline engine, the diesel cycle for a diesel engine, the 

Brayton cycle for a combustion gas turbine or turbojet engine), all of which are very 

relevant to our current energy use. Let’s briefly go over them, starting with the Otto cycle.  

 

This cycle is used to describe a typical gasoline engine and is generally described as a six-

step cycle between 6 states (Fig. 1.13): 

• State 0-1: The gasoline is pulled in and expanded by mixing with air. 

• State 1-2: The mixture is adiabatically compressed (causing it to heat up). 

• State 2-3: The spark plug ignites the gas, releasing the combustion heat and causing 

a large increase in T and P. 

• State 3-4: The pressure pushes the piston down, causing an adiabatic expansion and 

work creation (reducing T). 

• State 4-6:  The hot exhaust is removed from the engine. Thermodynamically this is 

represented as two steps. First heat removal (to stage 5) and then return of the 

cylinder to its original volume (from stage 5 to 6). 

 



 21 

 

Fig. 1.13 Illustration of the 6 steps of the Otto cycle in a 4 stroke gasoline engine. 

 

Thermodynamically, first (0-1) and last (5-6) steps are trivial and the cycle itself occurs 

between stages 1 and 5 (Fig. 1.14). 

 

The steps comprising the thermodynamic cycle are: 

A. The adiabatic compression of the fuel mixture, which takes work  

B. Heating at constant volume by release of the heat of combustion 

C. Adiabatic expansion of the combustion chamber along with the production of 

work 

D. Residual heat is removed when exhaust gas is discarded (at constant volume 

because no compression is applied) 

Note that the exhaust and intake are volume changes at constant pressure because no 

compression or expansion is applied to the gas as it enters and exits the chamber. 
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Fig. 1.14 PV (left) and TS diagrams (right) for the Otto cycle. 

 

 

We want to calculate the efficiency of the engine, which is defined as the work produced 

over the heat of combustion: 

𝜂 =
𝑊

∆𝐻𝑐𝑜𝑚𝑏
=

𝑊

𝑄𝑖𝑛
=

𝑄𝑖𝑛−𝑄𝑜𝑢𝑡

𝑄𝑖𝑛
        (1.38) 

 

We can calculate the heat or work produced at each step: 

A. For an adiabatic compression:  

𝑄 = 0   →   ∆𝑈1→2 = 𝑄 + 𝑊𝑖𝑛 = 𝑊𝑖𝑛 = 𝐶𝑉(𝑇2 − 𝑇1)    (1.39) 

 

B. Heating at constant volume  

𝑊 = 𝑝𝑑𝑉 = 0   →  𝑄𝑖𝑛 = 𝐶𝑉(𝑇3 − 𝑇2)      (1.40) 

 

C. Adiabatic expansion: 

𝑄 = 0   →  ∆𝑈3→4 = 𝑄 + 𝑊𝑜𝑢𝑡 = 𝑊𝑜𝑢𝑡 = 𝐶𝑉(𝑇3 − 𝑇4)    (1.41) 

 

D. Cooling at constant volume: 

𝑊 = 0   →   𝑄𝑜𝑢𝑡 = 𝐶𝑉(𝑇4 − 𝑇1)  

Fuel burns, qin 

A 

B C 

D 

Adiabatic reversible 
compression A 

B 

C 

D 
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The efficiency can then be calculated as: 

𝜂 =
𝐶𝑉(𝑇3−𝑇2)−𝐶𝑉(𝑇4−𝑇1)

𝐶𝑉(𝑇3−𝑇2)
=

(𝑇3−𝑇2)−(𝑇4−𝑇1)

(𝑇3−𝑇2)
      (1.42) 

 

Assuming that the gases involved act ideally and because V1=V4 and V2=V3 (see Fig. 1.14): 

𝑇2

𝑇1
= (

𝑉1

𝑉2
)

𝑘−1
= (

𝑉4

𝑉3
)

𝑘−1
=

𝑇3

𝑇4
        (1.43) 

Dividing equation 1.42 in the numerator and denominator by T3, we get: 

𝜂 =
(1−𝑇2/𝑇3)−(𝑇4/𝑇3−𝑇1/𝑇3)

(1−𝑇2/𝑇3)
=

(1−𝑇2/𝑇3)−(𝑇1/𝑇2−𝑇1/𝑇3)

(1−𝑇2/𝑇3)
= 1 −

(𝑇1/𝑇2−𝑇1/𝑇3)

(1−𝑇2/𝑇3)
  = 1 −

𝑇1

𝑇2

(1−
𝑇2
𝑇3

)

(1−
𝑇2
𝑇3

)
=

𝜂 = 1 −
𝑇1

𝑇2
          (1.44) 

We can introduce the compression ratio (𝑟𝑐 = 𝑉1/𝑉2) and rewrite the efficiency as: 

𝜂 = 1 −
𝑇1

𝑇2
= 1 − 𝑟𝐶

1−𝑘 with 𝑟𝑐 =
𝑉1

𝑉2
=

𝑉4

𝑉3
      (1.45) 

For modern engines, the compression ratio (𝑟𝑐) is around 8-9 for modern engines and k~1.3, 

the maximum efficiencies are around 45% for an ideal engine, which is much lower than 

an ideal Carnot cycle. Because of additional inefficiencies in a real system the efficiency 

is actually closer to 20%. 

 

The Diesel cycle: Diesel engines 

The Diesel cycle (unsurprisingly) describes Diesel engines which function in a slightly 

different way compared to gasoline engines. In gasoline engines, the spark leads to an 

explosion of a mixture of compressed fuel and air. This leads to an isochoric (constant 

volume) rapid combustion; i.e. a rapid rise in pressure and temperature at constant volume. 

In the Diesel engine the diesel fuel is injected after compression of air. The high 

temperature of the compressed air ignites the fuel, which combusts more slowly than an 
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injection allowing for a simultaneous expansion during combustion (i.e. not isochoric as 

was the case as was the case for the gasoline engine). 

 

Fig. 1.15 Illustration of the 6 steps of the ideal Diesel cycle in a typical Diesel engine. 

Specifically, can be described as going through 6 states (Fig. 1.15): 

• State 6-1: The fuel is pulled into the engine cylinder expanding the volume at 

constant pressure. 

• State 1-2: The air is adiabatically compressed (causing it to heat up, same as the 

Otto cycle except it’s pure air). 

• State 2-3: The diesel enters the chamber and starts burning. This increases the 

temperature slowly enough that the piston is pushed back (i.e. a volume increase) 

without causing an increase in pressure.  

• State 3-4: After the combustion is over, the excess pressure compared to 

atmospheric leads the expansion to continue (this time adiabatically), this time  

leading to a drop in pressure until fully expanded. 
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• State 4-6:  The hot exhaust is removed from the engine. Similarly to the gasoline 

engine, thermodynamically this is represented as two steps. First heat removal (to 

stage 5) and then return of the cylinder to its original volume (from stage 5 to 6). 

 

Fig. 1.16 PV (left) and TS diagrams (right) for the Diesel cycle. 

Let’s again calculate the efficiency of the system, which is defined in the same way as the 

Otto cycle:  

𝜂 =
𝑊

∆𝐻𝑐𝑜𝑚𝑏
=

𝑊

𝑄𝑖𝑛
=

𝑄𝑖𝑛−𝑄𝑜𝑢𝑡

𝑄𝑖𝑛
=

|𝑄2−3|−|𝑄4−5|

|𝑄2−3|
      (1.46) 

We need to calculate the heat exchanged in steps 2-3 (step B) and 4-5 (step D): 

B. For a system with heat exchange doing only PV work at constant pressure we have 

(see Eq. 1.8 and 1.21):  

𝑄𝑖𝑛 = ∆𝑈 + 𝑃∆𝑉 = ∆𝐻 = 𝐶𝑃(𝑇3 − 𝑇2)     (1.47) 

 

D. For a system at constant volume, we have: 

 𝑊 = 𝑝𝑑𝑉 = 0   →  |𝑄𝑜𝑢𝑡| = 𝐶𝑉(𝑇4 − 𝑇1)     (1.48) 

This leads to the following efficiency: 

𝜂 =
𝐶𝑃(𝑇3−𝑇2)−𝐶𝑉(𝑇4−𝑇1)

𝐶𝑃(𝑇3−𝑇2)
= 1 −

1

𝑘

(𝑇4−𝑇1)

(𝑇3−𝑇2)
      (1.49) 

 

A

B

C

D

A

B
C

D
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To make this dependent on physical parameters of the engine, we can define two 

parameters: 

• The compression ratio (same definition as the gasoline engine), which describes 

the ratio of volumes between the fully compressed and fully expanded engine 

cylinder: 𝑟𝑐 =
𝑉1

𝑉2
        (1.50) 

• The expansion ratio, which defines the further expansion after the injection of 

fuel has stopped: 𝑟𝑒 =
𝑉4

𝑉3
       (1.51) 

For ideal gases, we can use properties of adiabatic transformations (Eq. 1.27): 

𝑟𝑐 = (
𝑉1

𝑉2
) = (

𝑇2

𝑇1
)

1/(𝑘−1)

→  𝑇2 = 𝑇1(𝑟𝑐)𝑘−1 →  𝑇1 = 𝑇2 (
1

𝑟𝑐
)

𝑘−1
   (1.52) 

 

𝑟𝑒 = (
𝑉4

𝑉3
) = (

𝑇3

𝑇4
)

1/(𝑘−1)

→    𝑇3 = 𝑇4(𝑟𝑒)𝑘−1 → 𝑇4 = 𝑇3 (
1

𝑟𝑒
)

𝑘−1
   (1.53) 

 

Therefore, the efficiency becomes:  

𝜂 = 1 −
1

𝑘

(𝑇4−𝑇1)

(𝑇3−𝑇2)
         (1.54) 

With: 

(𝑇4−𝑇1)

(𝑇3−𝑇2)
=

𝑇3(
1

𝑟𝑒
)

𝑘−1
−𝑇2(

1

𝑟𝑐
)

𝑘−1

(𝑇3−𝑇2)
=

𝑇3(𝑇3−𝑇2)

𝑇3−𝑇2
(

1

𝑟𝑒
)

𝑘−1
−

𝑇2(𝑇3−𝑇2)

𝑇3−𝑇2
(

1

𝑟𝑐
)

𝑘−1

(𝑇3−𝑇2)
=

(𝑇3−𝑇2)

1−
𝑇2
𝑇3

(
1

𝑟𝑒
)

𝑘−1
−

(𝑇3−𝑇2)
𝑇3
𝑇2

−1
(

1

𝑟𝑐
)

𝑘−1

(𝑇3−𝑇2)
=

(𝑇3−𝑇2) (
(

1
𝑟𝑒

)
𝑘−1

1−𝑇2/𝑇3
−

(
1

𝑟𝑐
)

𝑘−1

𝑇3/𝑇2−1
)

(𝑇3−𝑇2)
= (

(
1

𝑟𝑒
)

𝑘−1

1−𝑇2/𝑇3
−

(
1

𝑟𝑐
)

𝑘−1

𝑇3/𝑇2−1
)      (1.55) 

 

Stage 2→ 3 is an isobaric transformation (𝑃2 = 𝑃3) and we can also use that Stage 4→1 is 

an isochoric transformation (𝑉4 = 𝑉1): 

𝑇3

𝑇2
=

𝑃3𝑉3

𝑃2𝑉2
=

𝑉3

𝑉2
=

𝑉3/𝑉4

𝑉2/𝑉1
=

𝑟𝑐

𝑟𝑒
        (1.56) 

Leading to: 

(𝑇4−𝑇1)

(𝑇3−𝑇2)
=

(
1

𝑟𝑒
)

𝑘−1

1−
𝑟𝑒
𝑟𝑐

−
(

1

𝑟𝑐
)

𝑘−1

𝑟𝑐
𝑟𝑒

−1
=

(
1

𝑟𝑒
)

𝑘

1

𝑟𝑒
−

1

𝑟𝑐

−
(

1

𝑟𝑐
)

𝑘

1

𝑟𝑒
−

1

𝑟𝑐

      (1.57) 

And an efficiency of: 
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𝜂 = 1 −
1

𝑘

(
1

𝑟𝑒
)

𝑘
−(

1

𝑟𝑐
)

𝑘

1

𝑟𝑒
−

1

𝑟𝑐

         (1.58) 

This equation is slightly more complicated than for the Otto cycle. In addition, it leads to 

the efficiency being lower for the Diesel cycle if the same compression ratio is used. This 

is fairly obvious when comparing P-V diagrams with the same V1 and V2 used for both 

cycles (Fig. 1.17, left), where the work produced (represented by the area within the cycle 

of the P-V diagram) during the Otto cycle is clearly greater. However, in practice Diesel 

cycles can operate at much higher compression ratios (20 vs. 8-9 for gasoline engines), 

which actually leads to a higher amount of work produced and a higher efficiency (Fig. 

1.17, right). This difference is because a fuel air mixture is compressed in the gasoline 

engine and this mixture would self-ignite (before the spark) if compressed too hard. This 

is not an issue for the diesel cycle. This leads an ideal Diesel cycle to efficiencies 

approaching 60% and in real engines can be a little above 40% (in trucks), which makes 

diesel engines the most efficient combustion engines available. However, the injection 

process of the fuel leads to local concentration gradients in the cylinder that can lead to 

inefficient combustion and the formation of particulates. Gradients are much less of a 

problem in the gasoline engine where the fuel is homogenized during expansion.  

 

Fig. 1.17 Comparison of the Diesel and Otto cycles using P-V diagrams for cycles with 

the same (left) and different (right) compression ratios. 

V1

V2

V1

V2

V2’
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The Brayton or Joule cycle: gas turbines and jet engines 

Though a Rankine cycle will have the highest efficiency, especially due to the possibilities 

of using reheat cycles, its use of an external heat source makes it more complicated than a 

cycle that integrates the combustion (internal combustion). Internal combustion systems 

notably avoid the use of a heat exchanger network. For this reason, combustion gas turbines 

are still frequently built to generate power and can be modeled using the Brayton (also 

called the Joule) cycle. The functioning of a gas turbine is almost identical to that of an 

airplane’s jet engine and so they can be understood using the same cycle. The only 

difference is the way the efficiency is calculated because the output of a gas turbine will 

be mechanical work, whereas the output of a jet engine will be the thrust generated by the 

additional kinetic energy imparted to the exiting gases. Let’s start by discussing the gas 

turbine. 

 

Fig. 1.18 Diagram of a gas turbine. 
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The Brayton cycle and by extension the gas turbine are arguably much simpler than a piston 

engine. Here the cycle goes through 4 states (Fig. 1.18): 

• State A-B: air enters the turbine and is compressed by a compressor to a higher 

pressure. This can be idealized as an adiabatic compression (Fig. 1.19) where both 

P and T rise but there is no increase in entropy because no heat is exchanged. 

• State B-C: the compressed air is mixed with fuel and burned. The idealized version 

of this step assumes that it is a constant pressure heating step, which expands the 

volume (Fig 1.19). As a result, P stays constant but V, T and S increase. The 

additional volume of the fuel is ignored because it is much smaller than the air 

going through the turbine (this is also assumed—and even closer to reality—in a 

jet engine that uses kerosene as fuel). 

• State C-D: The high temperature gas is then expanded back to atmospheric pressure 

to produce work. As a mirror of step A-B this is considered to be an adiabatic (no 

change in S) expansion (Fig. 1.19). 

• Step A-D: Since the exhaust gas will be hotter than air, its release into the 

atmosphere is considered as a release of heat to the surroundings at constant 

pressure, which brings the gas back to the same conditions as the entering gas (state 

A). 
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Fig. 1.19 The ideal Brayton cycle’s PV (left) and TS diagrams (right) that can be used to 

represent a gas turbine or a turbojet engine. 

 

The efficiency of this cycle will be the excess work generated during expansion compared 

to compression over the heat released by the fuel: 

𝜂 =
|𝑊𝐶𝐷|−|𝑊𝐴𝐵|

|𝑄𝐵𝐶|
  (1.59) 

A simple energy balance shows us that this excess work has to be equal to the difference 

between the heat given to (Qin) and the heat released by (Qout) the system: 

 𝜂 =
|𝑄𝐵𝐶|−|𝑄𝐴𝐷|

|𝑄𝐵𝐶|
  (1.60) 

 

For both BC and AD steps, we have a system at constant pressure doing only PV work. 

Therefore: 

𝑄 = ∆𝑈 + 𝑃∆𝑉 = ∆𝐻 = 𝐶𝑃(𝑇𝐹 − 𝑇𝐼)  (1.61) 

𝜂 =
𝐶𝑝(𝑇𝐶−𝑇𝐵)−𝐶𝑝(𝑇𝐷−𝑇𝐴)

𝐶𝑝(𝑇𝐶−𝑇𝐵)
  (1.62) 

Recall that for adiabatic steps (like A-B and C-D) we can use relations like Eq. 1.28. We 

can also use the fact that 𝑃𝐵 = 𝑃𝐶 and 𝑃𝐴 = 𝑃𝐷 (Fig. 1.19, left): 
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(
𝑇𝐵

𝑇𝐴
) = (

𝑃𝐵

𝑃𝐴
)

𝑘−1

𝑘
= (

𝑃𝐶

𝑃𝐷
)

𝑘−1

𝑘
= (

𝑇𝐶

𝑇𝐷
) (1.63) 

The efficiency becomes: 

𝜂 = 1 −
(𝑇𝐷−𝑇𝐴)

(𝑇𝐶−𝑇𝐵)
= 1 −

𝑇𝐴

𝑇𝐵

(
𝑇𝐷
𝑇𝐴

−1)

(
𝑇𝐶
𝑇𝐵

−1)
= 1 −

𝑇𝐴

𝑇𝐵

(
𝑇𝐶
𝑇𝐵

−1)

(
𝑇𝐶
𝑇𝐵

−1)
= 1 −

𝑇𝐴

𝑇𝐵
= 1 − (

𝑃𝐴

𝑃𝐵
)

𝑘−1

𝑘
 (1.64) 

This equation tells us that the more you compress the fluid at the first stage, the higher the 

efficiency. The limitation is that this also increases the pre-combustion and thus post-

combustion temperature. In practice, material resistance to high temperatures limits the 

efficiency to pressure ratios of about 20 (and a theoretical heat to work efficiency of 55-

60%). Furthermore, the initial compression step is done by a compressor which requires 

much more energy than a liquid pump and so the compressor efficiency really matters. As 

shown on the diagram (Fig. 1.18), this compressor directly employs a large fraction (about 

60%) of the output work produced to compress the incoming gas. Compressor efficiencies 

can reach about 80%, which leads to real gas turbine heat to work efficiencies of around 

40-45%. 

 

Fig 1.20 Diagram of a jet (or turbojet) engine. 

The jet (or turbojet) engine works in exactly the same way. The only thing that changes is 

the shape of the turbine, which becomes narrower as the gases pass through it to maximize 

the velocity of the exiting gases to maximize propulsion. The concept of efficiency is also 
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also slightly different because in a jet engine, we care about how much propulsive power 

we generate not just work. To get to the overall efficiency of a jet engine, it is useful to 

break it down into the thermal efficiency, which this time describes the kinetic energy 

received by the fluid as opposed to the work (Eq. 1.65) and the propulsion efficiency, which 

is the ratio of propulsive power produced divided by the rate of production of this kinetic 

energy (Eq. 1.67)3: 

𝜂𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
(𝑚𝑎𝑖𝑟,𝑜𝑢𝑡𝑣𝑜𝑢𝑡

2 −𝑚𝑎𝑖𝑟,𝑖𝑛𝑣𝑖𝑛
2 )/2

𝑄𝑖𝑛
  (1.65) 

Since all of the net work being produced is just used to accelerate the gas, this is equivalent 

to the Brayton cycle efficiency for the gas turbine: 

𝜂𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 1 −
𝑇𝐴

𝑇𝐵
  (1.66) 

𝜂𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 =
𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦
 (1.67) 

Where the rate of production of propulsive kinetic energy is simply the net kinetic energy 

received by a given mass of air per time (𝑚̇𝑎𝑖𝑟): If we neglect the amount of fuel added to 

the incoming air (𝑚̇𝑎𝑖𝑟,𝑖𝑛 = 𝑚̇𝑎𝑖𝑟,𝑜𝑢𝑡 = 𝑚̇𝑎𝑖𝑟), we have: 

𝜂𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 =
𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟

𝑚̇𝑎𝑖𝑟(𝑣𝑜𝑢𝑡
2 −𝑣𝑖𝑛

2 )/2
  (1.68) 

The overall efficiency is: 

𝜂𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝜂𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝜂𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒   (1.69) 

Propulsive power is defined as the product of thrust and flight speed (𝑣𝑓𝑙𝑖𝑔ℎ𝑡), which if 

equivalent to the incoming airspeed is: 

𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟 = 𝑣𝑓𝑙𝑖𝑔ℎ𝑡𝑇ℎ𝑟𝑢𝑠𝑡 = 𝑣𝑖𝑛(𝑚̇𝑎𝑖𝑟(𝑣𝑜𝑢𝑡 − 𝑣𝑖𝑛)) (1.70) 

 
3 This short discussion on aircraft efficiency was adapted from the notes of 

“Thermodynamics and Propulsion” an MIT Aerospace class by Prof. Z. S. Spakovszky 
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𝜂𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑣𝑒 =
𝑣𝑖𝑛(𝑚̇𝑎𝑖𝑟(𝑣𝑜𝑢𝑡−𝑣𝑖𝑛))

𝑚̇𝑎𝑖𝑟(𝑣𝑜𝑢𝑡
2 −𝑣𝑖𝑛

2 )/2
=

2 𝑣𝑖𝑛

𝑣𝑜𝑢𝑡+𝑣𝑖𝑛
=

2

1+
𝑣𝑜𝑢𝑡
𝑣𝑖𝑛

 (1.71) 

This means that the propulsive efficiency of an airplane is the highest when  𝑣𝑖𝑛 ≈  𝑣𝑜𝑢𝑡, 

which is approached when the speed of the airplane is high. However, this is the point at 

which thrust is low (Eq. 1.70). This leads airplanes to be much more efficient at cruising 

altitudes rather than take-off.  

Overall efficiencies of jet engines therefore combine both numbers discussed above. None 

of this discussion includes effects like air resistance which requires engines to maintain 

fairly high thrust even at high speeds. For this reasons, pure turbojet engines have 

efficiencies slightly above 20%. More modern engines use a so-called air bypass system, 

where a good deal of air that is compressed does not go through the combustion zone. This 

reduces 𝑣𝑜𝑢𝑡 − 𝑣𝑖𝑛 , which increases the propulsive efficiency but also increases 𝑚̇𝑎𝑖𝑟 

significantly, which increases thrust. These design improvements along with 

improvements in materials in engines that allow post combustion temperatures to reach 

1550°C4 has allowed modern jet engines to reach efficiencies close to 40%5. 

 

  

 
4 Peter Spittle 2003 «Gas Turbine Technology» Phys. Educ. 38 504 
5 Commercial Aircraft Propulsion and Energy Systems Research 

Reducing Global Carbon Emissions, National Academies Press (2016). 
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1.7 Exergy 

At this point, we have been talking a lot about how to generate work. One useful concept 

is to know what is the maximum amount of work that can be obtained for a given process 

(e.g. a system going from state 1 to state 2). This is important because it will allow us to 

calculate a true efficiency for our work producing process. The maximum obtainable work 

is often referred to as “availability” in the US with a symbol of b or B, and as “exergy” in 

Europe. We will refer to Exergy and use the symbol WEx. 

 

Change of exergy between two states 

To calculate WEx let’s take a system going from state 1 to state 2: 

 

Fig. 1.21 Exergy produced from a system going from State 1 to State 2 within an 

environment at state 0. 

The system at both State 1 and 2 can exchange with the environment, which is at the ground 

state (state 0). The maximum amount of work obtainable from either state 1 or 2 is obtained 

when they are brought down to complete equilibrium with the environment while 

undergoing whatever change in internal energy (U). Along the way, to obtain the maximum 
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amount of work, you never reject any heat to the environment at a T>T0. In fact, you always 

use a Carnot engine to bring heat to the environment at T0. For system 1: 

 

Fig. 1.22 Exergy production for system 1 brought to the ground state. 

 

Since a Carnot engine is reversible, we know how much heat is released to the environment 

(eq. 1.13): 

𝑑|𝑄0| = 𝑇0𝑑𝑆  (1.72) 

From the first law, we know that (eq. 1.1): 

𝑑𝐸 = 𝑑𝑄0 − 𝑑𝑊 = 𝑇0𝑑𝑆 − 𝑑𝑊 = 𝑇0𝑑𝑆 − 𝑑𝑊𝑆ℎ − 𝑝0𝑑𝑉 − 𝑑𝑊0 (1.73) 

Some of the work that is produced is needed to push back the atmosphere (p0dV) and 

therefore the only useful work (or exergy dWEx) is (using the previous equation): 

𝑑𝑊𝐸𝑥 = 𝑑𝑊𝑆ℎ + 𝑑𝑊0 = −𝑑𝐸 + 𝑇0𝑑𝑆 − 𝑝0𝑑𝑉 (1.74) 

Remember that E= U+Ep+Eki. By definition, we consider the ground state has no potential 

or kinetic energy. Therefore: 

𝑊𝐸𝑥,1→0 = −(𝑈0 − 𝐸1) + 𝑇0(𝑆0 − 𝑆1) − 𝑝0(𝑉0 − 𝑉1) (1.75) 
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For a system with no changes in kinetic or potential energy: 

𝑊𝐸𝑥,1→0 = −(𝑈0 − 𝑈1) + 𝑇0(𝑆0 − 𝑆1) − 𝑝0(𝑉0 − 𝑉1) (1.76) 

Notice that for a system where a state change is brought back down to the same state  (this 

is the case for most fuel conversion processes, where the fuel enters and exits more or less 

at T0 and P0, which are Tsurr and Patm), we have (remember G=U-TS+PV): 

𝑊𝐸𝑥,1→0 = −∆𝐺0  (1.77) 

Coming back to our change from State 1 to State 2, we have (using eq. 1.75): 

𝑊𝐸𝑥,1→2 = 𝑊𝐸𝑥,1→0 − 𝑊𝐸𝑥,2→0 = −(𝐸2 − 𝐸1) + 𝑇0(𝑆2 − 𝑆1) − 𝑝0(𝑉2 − 𝑉1) (1.78) 

 

Work in a flow system 

In a flow system, the principles are largely the same as in a batch (system described above). 

At each step, any heat released at temperature T can be extracted by use of a Carnot Engine 

to bring it down to T0 (Fig. 1.23).  

 

Fig. 1.23 Exergy calculation in a flow system. 

The only difference is that we can use enthalpy (instead of internal energy), which, at 

constant pressure, already accounts for the “pushing back of the atmosphere” (see equation 

1.8). By analogy with equation 1.75, we have:  

𝑊𝐸𝑥,1→0 = −(𝐻0 − (𝐻 + 𝐸𝑝 + 𝐸𝑘)1) + 𝑇0(𝑆0 − 𝑆1) (1.79) 
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For a change from state 1 to 2 (and assuming the absence of kinetic and potential energy 

changes), we have: 

𝑊𝐸𝑥,1→2 = −(𝐻2 − 𝐻1) + 𝑇0(𝑆2 − 𝑆1)  (1.80) 

Given how free energy is related to enthalpy (G=H-TS), it is easy to see how Equation 1.78 

can be found for a flow system as well. 

 

Work lost in a real process 

Exergy measures the maximum amount of work that can be produced in an ideal system, 

but can we measure the actual amount of lost compared to the exergy? Let’s see. A change 

in energy from State 1 to 2 (∆E1→2, this is the same as in the ideal function because E is a 

state function!) will release actual work and heat: 

∆𝐸1→2 = 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑜
𝑠𝑢𝑟𝑟.

− 𝑊𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑜 
𝑠𝑢𝑟𝑟.

= 𝑇0∆𝑆𝑠𝑢𝑟𝑟. − 𝑊𝑠ℎ𝑎𝑓𝑡,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝0(𝑉2 − 𝑉1) (1.81) 

We can then use this equation and equation 1.78 to calculate the work lost in an actual 

process: 

𝑊𝑠ℎ,𝑙𝑜𝑠𝑡 = 𝑊𝐸𝑥,1→2 − 𝑊𝑠ℎ𝑎𝑓𝑡,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑇0(𝑆2 − 𝑆1) + 𝑇0∆𝑆𝑠𝑢𝑟𝑟. = 𝑇0(∆𝑆𝑠𝑦𝑠. + ∆𝑆𝑠𝑢𝑟𝑟.) = 𝑇0∆𝑆𝑡𝑜𝑡. (1.82) 

What does this mean? Well, in an ideal system the total entropy production is zero. We 

knew that already! The important point is that the ∆𝑆𝑠𝑦𝑠. will be the same for an ideal and 

real system (S is a state function!). All the work lost has to do with the surroundings! In an 

ideal system, the surrounding’s entropy change is equal to that of the system, and the total 

entropy change is zero. In a non-ideal system, non-ideal events (heat transfer, friction, etc.) 

increase the entropy change of the surroundings, leading to an overall gain of entropy.  
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1.8 Electrical machines 

In practice, heat to work is not the only way to generate mechanical work. In fact, in day-

to-day life, you are probably more familiar with seeing mechanical work being created 

from electricity. For a variety of reasons—notably their efficiency, convenience and their 

compatibility with electricity that is produced renewably—already omnipresent electrical 

motors are likely to become even more frequent. Since you are chemists/chemical 

engineers and not electrical engineers, I will not (nor am I qualified to) give you an in-

depth overview of electrical motors but will just review their basic qualitative principle. 

 

In electric motors, electric currents are used to create a first electromagnet. This first 

electromagnet is combined with a second magnet that is either a permanent magnet, another 

electromagnet or a magnet that is created by induced current (permanent magnets or 

induced current magnet are both found in electric cars for example).  The electromagnetic 

force (Lorentz force) exerted by the magnetic fields is used to create mechanical work (e.g. 

by turning a rotor). If you have ever used a magnet to push or rotate another magnet, you 

can easily visualize how magnetic fields can be used to create work. Just to give you an 

idea of how they work, I will describe two common types of motors, a direct current (DC) 

brushed motor and an alternating current (AC) induction motor. 

In a brushed DC motor (Fig. 1.18), the stator is either a permanent magnet or an 

electromagnet. The brushes allow the current (I) to flow through a coil (or coils) in the 

rotor to create a magnetic field that interacts with the stator. These two magnetic fields 

field will create a force that pushes the rotor (Fig 1.18, A-B). If this field on the rotor was 

static, it’s easy to see how the rotor would get stuck as it would rotate to align its south 
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pole with the stator’s north pole (Fig. 1.18, A-B). However, the break in the commutator 

allows the current to reverse the field on the rotor and keep the rotation going (Fig. 1.18 

C).    

 

Fig. 1.18 Functioning of a brushed DC motor (modified from Jared Owen’s video on 

youtube6, I encourage you to watch it). Panels A-C represent different stages of the 

rotation. Panel C represents the state of the rotor right after passing the break in the 

commutator, which switches the direction of the current and reverses the magnetic field 

of the rotor. 

In an AC induction motor, AC current (typically 3-phase) is run through the stator using a 

particular winding pattern that induces a rotating magnetic field (Fig. 1.19A). Any 

changing magnetic field, will induce a current in a conducting material within that field. 

 
6 https://www.youtube.com/watch?v=CWulQ1ZSE3c  

Magnetized 
stator

Magnetized 
stator

C
oi

l i
n 

ro
to

r

Brush

Commutator
Break in commutator 

(allows current switch)

Brush

Ill
us

tra
tio

n
of

th
e

el
ec

tro
m

ag
ne

t i
n

th
e

ro
to

r

Magnetized 
stator

Magnetized 
stator

Coil in rotor

Brush
Commutator

Brush

Magnetized 
stator

Magnetized 
stator

C
o
il 

in
 r

o
to

r

Brush
Commutator

Brush

F F

F

F
F

I I

I

A B

C

https://www.youtube.com/watch?v=CWulQ1ZSE3c


 40 

As a result, the rotor will see an induced current flowing through it (Fig. 1.19B). Since any 

current (induced or not), will create its own magnetic field, this will result in two magnetic 

fields with a force exerted between them. As a result of this force, the rotor will turn (Fig. 

1.19C). However, the rotor rotation speed (NRotor) will always be slower than the stator 

speed (NS). This difference in speed, known as slip, is what controls the torque of the motor 

because the difference drives the force between the magnetic fields. 

 

Fig. 1.19 The general concept of an AC induction motor (this figure is again adapted 

from a very nicely done youtube video by LearnEngineering7, which I encourage you to 

watch). A. A particular winding pattern in the stator combined with an alternating 3 phase 

current (i.e. the current direction, shown by the blue arrows periodically reverses) induces 

a rotating magnetic field. B. The changing magnetic field induces a current through the 

rotor, which creates its own magnetic field. C. The force created by these two magnetic 

fields induces a rotation in the rotor.  

 
7 https://www.youtube.com/watch?v=AQqyGNOP_3o  
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Beyond these exact principles, the important point is that electrical motors/generators are 

largely devoid of complex moving parts and suffer from minimum losses through friction 

or heating. The efficiency of electrical motors is typically very high. In ideal conditions, 

this efficiency is well above 90% even in practical settings. In fact, the United States Code 

of Regulations has even regulated minimum efficiencies for electrical motors at above 

around 80% for small motors (power ≤ 1HP, i.e. typical motors in a house such as a mixer 

or a fan) to around 95% for large motors (several hundred HP, typical of an electric car, at 

peak efficiency)8.  

 

These values are well above what is seen for any practical heat to power systems, especially 

those seen in individual or even large-scale transportation. If this is the case, why are we 

still using fossil fuels? The answer has to do with energy density. Electrical energy carriers 

(i.e. batteries) have a far, far lower energy densities than hydrocarbons and other fossil 

fuels (Fig. 1.20). Plainly, this means it takes far more weight and volume to carry energy 

stored in batteries compared to the energy stored in the chemical bonds of hydrocarbons 

(or renewable fuels for that matter). This has been the main challenge in the development 

of electric cars, which still struggle with range, and has made the development of electric 

planes practically impossible at this stage. The efficiency of batteries is not the problem as 

their charge/discharge can reach 90% or more. Their longevity and cost have been a 

challenge but has rapidly improved. Instead, the greatest challenge, remains to have an 

electric energy carrier that has a sufficient energy density and still provide electrical work 

efficiency. 

 
8 https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431 
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Fig. 1.20 Mass and volumetric energy densities of various energy carriers including 

hydrocarbons (blue), biobased (red) and batteries (green). 

 

Given that electrical motors are so efficient and chemical fuels are so energy dense, a 

potential solution has been to combine the advantage as both by using these fuels to create 

electrical work. This idea is the working principle of a fuel cell. We will discuss their 

operation and especially their limits below.  
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1.9 Fuel cells 

The goal of fuel cells is to huge high energy carriers like fuels to generate electrical power 

directly (i.e. without going through heat). The basic principle is that fuel combustion 

reactions are redox reactions and thus exchange electrons. If this exchange of electrons can 

be channeled instead of occurring directly between the molecules, it can be used to generate 

an electrical current. Let’s take hydrogen combustion as an example: 

𝐻2 +
1

2
𝑂2 ⇌ 𝐻2𝑂 (1.83) 

In a combustion, electrons are exchanged through a series of collisions involving many 

elementary reactions to make this overall reaction. But in all of these elementary reactions, 

electrons are exchanged directly. To make the electron exchange explicit, we can split this 

overall reaction into two half reactions (Eq. 1.84 and 1.85). This is exactly what occurs in 

a hydrogen fuel cell. 

𝐻2 ⇌ 2𝐻+ + 2𝑒− (1.84) 

1

2
𝑂2 + 2𝐻+ + 2𝑒− ⇌ 𝐻2𝑂 (1.85) 

Spatially segregating these two reactions in the right system can force the electrons to flow 

through an external circuit thus generating a current. This separation is done by connecting 

the location of these two half reactions through one medium that only allows the flow of 

electrons (an electrical conductor) and one that only allows the flow of ions but not 

electrons (an electrolyte). A simple example of this would be plunging two platinum 

electrodes connected by a wire into an aqueous sulfuric acid solution and bubbling 

hydrogen and oxygen close to each one of the electrodes (Fig. 1.21 A). The protons can 

flow through the sulfuric acid (as an H2SO4 solution is already filled with H+) and the 

electrons can flow through the wire, but not vice-versa. If a load is introduced along the 
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path of the flowing electrons (e.g. the lightbulb in Fig. 1.21 A), these electrons will power 

the load (making the light bulb glow). 

 

Fig. 1.21 Fuel cell representation. A. A basic fuel cell and B. A more realistic fuel cell 

schematic. 

A more realistic cell configuration (Fig. 1.21 B) will feature porous electrodes and a 

controlled flow of reactants over this porous structure. The electrolyte must be designed to 

minimize resistance (which is much more significant than electron conduction through a 

metal) and maximize durability. Resistance is typically minimized by making the 

membrane very thin. A big challenge to durability is leakage and/or evaporation of the 

electrolyte. For this reason, polymer electrolytes, solid acids, solid oxides, and even molten 

salts have been used (the last two examples being high temperature fuel cells). However, 

even with all of these features, the fundamental principles remain the same as the simple 

fuel cells depicted in Fig. 1.21 A. Below, we will review the fundamental thermodynamic 

principles that control the maximum performance of fuel cells. 
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Thermodynamic potentials 

Beyond the physical interpretation of the first law as heat and work, another (more 

mathematical) interpretation of the first law is that it describes the internal energy function 

(U) as a function of independent variables S and V. For completeness, we can also consider 

the case where there is a change in number of moles (N), which goes beyond the case of an 

“isolated system” that we used before.  

𝑑𝑈(𝑆, 𝑉, 𝑁) = (
𝜕𝑈

𝜕𝑆
)

𝑉,𝑁
𝑑𝑆 + (

𝜕𝑈

𝜕𝑉
)

𝑆,𝑁
𝑑𝑉 + (

𝜕𝑈

𝜕𝑁
)

𝑆,𝑉
𝑑𝑁 = 𝑇𝑑𝑆 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 (1.86) 

The left-hand side of the equation (with partial derivatives) arises purely from mathematics 

and would be true for any equation. The right-hand side is based on the definition of the 

first law and the thermodynamic definitions of temperature, pressure and chemical 

potential (𝜇): 

(
𝜕𝑈

𝜕𝑆
)

𝑉,𝑁
= 𝑇 (1.87)  

(
𝜕𝑈

𝜕𝑆
)

𝑆,𝑁
= −𝑃 (1.88) 

(
𝜕𝑈

𝜕𝑁
)

𝑆,𝑉
= 𝜇 (1.89) 

 

The independent variables used to describe U are not very practical for two reasons. First 

they are extensive variables and second, concepts like entropy are fairly abstract and 

difficult to measure (unlike for volume, pressure or temperature, there are no entropy 

meters). Extensive variables are variables that depend on the size of the system and cannot 

be changed without modifying the system, whereas intensive variables (i.e. that don’t 

change with the size of the system) like T and P are fairly easy to modify during an 

experiment. 
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Fortunately, there is a mathematical way of defining functions that retain all of the 

mathematical information of the original function but depend on alternate independent 

variables: Legendre Transformations. I won’t go into the demonstration of why the original 

information is retained, but the actual transformation is fairly straightforward. If we take 

the basic differential of PV and apply the chain rule: 

𝑑(𝑃𝑉) = 𝑃𝑑𝑉 + 𝑉𝑑𝑃 (1.90) 

Rearranging and switching signs: 

−𝑃𝑑𝑉 = −𝑑(𝑃𝑉) + 𝑉𝑑𝑃 (1.91) 

which if we insert into equation 1.83: 

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑑(𝑃𝑉) + 𝑉𝑑𝑃 + 𝜇𝑑𝑁       (1.92) 

Rearranging, we obtain the definition of enthalpy: 

𝑑(𝑈 + 𝑃𝑉) = 𝑑𝐻 = 𝑇𝑑𝑆 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁      (1.93) 

Here, we how enthalpy emerges naturally from a mathematical transformation, which 

complements the physical explanation we introduced earlier. 

We can do the same transformation again by taking the differential of TS: 

𝑑(𝑇𝑆) = 𝑇𝑑𝑆 + 𝑆𝑑𝑇  or  𝑇𝑑𝑆 = 𝑑(𝑇𝑆) − 𝑆𝑑𝑇 (1.94) 

Doing the same transformation on equation 1.90, we get the definition of free energy (G): 

𝑑(𝑈 + 𝑃𝑉 − 𝑇𝑆) = 𝑑𝐺 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 + 𝜇𝑑𝑁     (1.95) 

where we now have a thermodynamic potential (the name given to the properties 𝑈, 𝐻, and 

𝐺), that is dependent on independent variables 𝑃 and 𝑇, which are far more practical to use. 

As we will see, free energy is particularly important when trying to understand fuel cells.   

There is fourth potential, which comes from applying Eq. 1.94 on the first law directly (Eq. 

1.86), which leads to the so-called Helmholtz potential (𝐹): 
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𝑑(𝑈 − 𝑇𝑆) = 𝑑𝐹 = −𝑆𝑑𝑇 − 𝑃𝑑𝑉 + 𝜇𝑑𝑁 (1.96) 

Physically, enthalpy could be understood as internal energy (i.e. the energy needed to 

create the system) plus the work (𝑃𝑉) needed to make room for it. Similarly, −𝑇𝑆 can be 

understood as also subtracting any energy provided to the system by the environment. 

These four potentials and their associated physical interpretations are summarized in Fig. 

1.22. 

 

Fig. 1.22 The four thermodynamic potentials obtainable through Legendre transformation 

of the first law. 

 

Maximum fuel cell efficiency and voltage 

As we will see, Gibbs free energy will allow us to calculate the electric work potential of 

a fuel in a fuel cell system. Let’s use the first law on a fuel cell system, where we imagine 

a fuel undergoing a change in internal energy, which releases heat and work (both PV and 

electrical). We can adapt our formulation of the first law from Eq. 1.3 for this purpose 
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(replacing 𝑊𝑠ℎ𝑎𝑓𝑡 with 𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 as there are no moving parts in a fuel cell). We also use 

the differential form: 

𝑑𝑈 =  𝑑𝑄 + 𝑑𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 − 𝑑𝑊𝑃𝑉   (1.97) 

If we imagine a reversible transformation (best case scenario). We can replace 𝑑𝑄 with 

𝑑𝑄𝑟𝑒𝑣 = 𝑇𝑑𝑆. We can also use 𝑃𝑑𝑉 for volume work. Finally, we can add a negative sign 

in front of electric work as the fuel cell will (presumably) always be producing work, not 

receiving it. 

𝑑𝑈 =  𝑇𝑑𝑆 − 𝑑𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 − 𝑃𝑑𝑉   (1.98) 

With the definition of free energy (𝐺 = 𝑈 + 𝑃𝑉 − 𝑇𝑆; Eq. 1.92): 

𝑑𝐺 = 𝑑𝑈 − 𝑆𝑑𝑇 −  𝑇𝑑𝑆 + 𝑃𝑑𝑉 + 𝑉𝑑𝑃 = −𝑆𝑑𝑇 + 𝑉𝑑𝑃 − 𝑑𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐   (1.99) 

For a system at atmospheric conditions (constant T and P), we get: 

𝑑𝐺 = −𝑑𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐   (1.100) 

In other words, for one mole of fuel operating at constant temperature and pressure (which 

fuel cells, typically do), the reversible work that could be obtained from a fuel cell can be 

calculated as: 

𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = −∆𝐺𝑅𝑋𝑁 (1.101) 

This definition, can now allow us to calculate the efficiency of a fuel cell, which would be: 

𝜂 =
𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 

𝑇𝑜𝑡𝑎𝑙  𝑒𝑛𝑒𝑟𝑔𝑦  
 (1.102) 

What is the total energy available in a fuel? It corresponds to the change in internal energy 

when you burn the fuel (which will be negative) added to the energy required to make room 

for the resulting products in the surroundings (which will be positive), which, if at constant 

pressure is equal to the enthalpy (∆𝑈 + 𝑃∆𝑉 = ∆𝐻): 

𝜂 =
−∆𝐺𝑅𝑋𝑁 

−∆𝐻𝑅𝑋𝑁  
 (1.103) 
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At 25°C and 1 atm, hydrogen oxidation (H2 +1/2O2 → H2O) has a ∆𝐺𝑅𝑋𝑁 = −237  kJ/mol 

and ∆𝐻𝑅𝑋𝑁 = −286  kJ/mol, leading to a reversible efficiency of 83%. 

 

One caveat9 to this efficiency expression is that in certain special cases, it may not be 

appropriate to use. Indeed, in certain special cases, it can lead to efficiencies over 100%. 

Let’s understand how. The definition of free energy can be rewritten as a function of 

enthalpy: 

𝐺 = 𝑈 + 𝑃𝑉 − 𝑇𝑆 = 𝐻 − 𝑇𝑆 (1.104) 

which, at constant temperature becomes: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 (1.105) 

We can use this result to rewrite the efficiency equation found in Eq. 1.103: 

𝜂 =
−∆𝐺𝑅𝑋𝑁 

−∆𝐻𝑅𝑋𝑁  
=

∆𝐻𝑅𝑋𝑁−𝑇∆𝑆𝑅𝑋𝑁  

∆𝐻𝑅𝑋𝑁  
= 1 −

𝑇∆𝑆𝑅𝑋𝑁  

∆𝐻𝑅𝑋𝑁  
 (1.106) 

The enthalpy of any reaction that releases energy will be negative. The change in entropy, 

though usually negative, can be positive for some reaction. This would lead to efficiencies 

over 100%! Are we creating energy in such cases? Of course not, this would violate the 

first law. Instead, what this means is that in cases where entropy is positive, the system 

would be receiving heat from the surroundings to remain at constant temperature. This heat 

could, under these conditions, be turned into electrical work. For these special cases, this 

additional heat should be included in an efficiency calculation, which leads to the trivial 

case where the efficiency is equal to unity. 

𝜂 =
𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 

𝑇𝑜𝑡𝑎𝑙  𝑒𝑛𝑒𝑟𝑔𝑦  
=

𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑓𝑟𝑜𝑚 𝑅𝑋+ℎ𝑒𝑎𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑  
=

−∆𝐺𝑅𝑋𝑁 

−∆𝐻𝑅𝑋𝑁+𝑇∆𝑆𝑅𝑋𝑁
=

∆𝐻𝑅𝑋𝑁−𝑇∆𝑆𝑅𝑋𝑁 

∆𝐻𝑅𝑋𝑁−𝑇∆𝑆𝑅𝑋𝑁  
= 1 (1.104) 

 
9 This discussion is based on the article: A. E. Lutz et al. International Journal of 

Hydrogen Energy 27 (2002) 1103–1111. 
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In practice, these reversible efficiencies are further limited by two further effects. The first 

is the voltage efficiency, which captures the fact that the true voltage of a fuel cell is lower 

than reversible thermodynamic voltage (see below). The true voltage depends on the 

current drawn from the fuel cell, and the two are inversely proportional, meaning that fuel 

cells are most efficient at low load. The second is the fuel utilization efficiency. Due to 

kinetics not all the fuel entering the cell will be used. Some fuel might remain unconverted 

and exit the cell while other fuel might undergo side reactions that do not contribute to 

producing electricity. This is a challenge in cases when the load is not constant. For 

example, maximum load requires excess fuel, that might be wasted at lower load… This 

requires a careful control system to apply at so-called constant stoichiometry conditions. 

In practice this leads to efficiencies that can approach 80% at low current densities but can 

drop to 50-20% at higher current densities. 

 

Reversible voltage 

Similarly, we can use the free energy to calculate the reversible voltage that can be 

produced by a given reaction in a fuel cell. The electrical work done by moving a charge  

(𝑞) is proportional to this voltage or electrical potential (𝐸): 

𝑊𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 = 𝑞𝐸 (1.104) 

If this charge is carried by electrons, we have: 

𝑞 = 𝑛𝐹 (1.105) 

where 𝑛 is the number of moles of electrons transferred and 𝐹is Faraday’s constant. With 

Equations, 1.104, 1.105 and 1.101, we get: 
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∆𝐺𝑅𝑋𝑁 = −𝑛𝐹𝐸 (1.105) 

which rearranges to (for standard temperatures and pressures): 

𝐸0 = −
∆𝐺𝑅𝑋𝑁

0

𝑛𝐹
 (1.105) 

If we again take the standard Gibbs free energy of hydrogen oxidation (-237 kJ/mol), we 

get 1.23 V. In practice, the voltage will be even lower, meaning to get any kind of 

reasonable voltage (starting a car—much less load than powering a car!—takes 10 volts), 

you need to stack tens sometimes hundreds of fuel cells. For example, Toyota’s Mirai car 

which is based on hydrogen fuel cells has 370 stacked fuel cells and an expected range of 

700 km. Tesla cars typically have a range of 500-550 km with significant more battery 

weight. Of course, we do not yet have a hydrogen distribution network… 
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