1 Technical aspects of energy

1.1 Conservation of energy (the 1%t law of thermodynamics)

Energy is discussed and brought up at length in everyday life, but it is seldom accurately
defined. Given the title of the course, we should probably rigorously define it: Energy is
simply a certain quantity that has been observed as remaining constant during
physical, chemical and/or biological changes.

Based on this observation (or | should say, observations made over the course of centuries),
a postulate was made that energy is conserved. From this and one other postulate (which
has to do with entropy and that we shall bring up shortly), an entire mathematical construct
was built, which we know as thermodynamics. For this reason, the conservation of energy

is often referred to as the first law of thermodynamics.

If energy is conserved, that means that the universe’s energy is constant. For practical
purposes and for studying a specific “closed” system (i.e. no exit/entry of matter from/to
the system), the universe can be defined as a closed system + surroundings. In such a case,

the first law of thermodynamics can be stated as:

AE = Q + W [closed system] (1.2
With:

AE= Change in energy content of the system.

Q: heat transferred to the system from its surroundings.

W: amount of work done on the system by its surroundings®.

L In many textbooks work is defined as the amount of work done on the surroundings by the systems. Then
1.1 would become AE = Q — W. Both are correct provided that work is defined consistently throughout.



For practical reasons let’s rewrite Equation 1.1 by subdividing E and W into different

components:

AE = AU + AE, + AEy = Q + W, — Wpy  [closed system] (1.2
Where:

AU= Change in internal energy (this is changed by modifying the temperature, changing
the phase, modifying the molecular architectures, changing the atomic structures, etc. of
the system)

AEp: Change in potential energy (this is changed by shifting the system location in a force
field)

AEk: Change in kinetic energy (this is changed by changing the system’s velocity)

Whv: Pressure-VVolume work or PV work. This type of work arises that any system has at
least some volume, and to achieve that volume it has to move the surroundings out of the
way. Similarly, if the system’s volume changes, it either gives its surroundings volume by
shrinking (i.e. receives work) or shoves the surroundings out of the way (performs work).
Since for a positive dV the system performs work, it is convenient to add a negative sign
in front of Wev (see eq. 1.4).

Wsh: Shaft work, which we define as any work that is not PV work (this could include

rotating a shaft but also electrical work, etc.)

In most cases, it is not practical to take into account Ep and Ex so let’s forget about them
for now (but remember that in some cases they intervene!!). This leads 1.2 to become the
closed system shown in Fig. 1.1:

AU = Q + Wy, — Wpy [closed system] (1.3)
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Fig. 1.1 Closed system

1.2 PV work and enthalpy
Let’s expand on our definition of PV work (Wev), which is the work done by shoving back

a volume V=V1-V: at a pressure P:

Wpy = f;f PAV (1.4)
To solve this integral for non-constant pressures, one needs an equation that relates the
pressure P to the system’s temperature T and volume V. Such an equation is called an
equation of state (EOS). The most well known equation of state is of course the ideal gas
law:

PV =nRT or P = ()RT (1.5)
Other EOSs include the Van der Waals EOS, which performs markedly better than the

ideal gas law for real systems. We also commonly use more complex EOSs such as Peng

Robinson or Soave-Redlich-Kwong.

It is sometimes useful to consider that the total energy of a system is not only its internal
energy (U) but also the energy it is credited with for having a volume V (i.e., some energy
had to be provided for our system to shove the surroundings out of the way). At constant

pressure, this energy is:

Wpy = [/ PdV = PV (1.6)



To account for this energy, it is useful to define enthalpy (H), which includes PV:
H=U+PV (1.7)

In systems at constant pressure?, it is often useful to use enthalpy because you don’t have
to worry about remembering to account for the work done to push back the atmosphere.
Therefore, taking equations 1.3 and 1.6, we have for a closed system at constant
pressure:

AU + Wpy, = AU + PAV = AH = Q + Wy, (1.8)
Whereas for a closed system at constant volume (Wpy, = [ PdV = 0), we have:

AU = Q + Wy, (1.9)
Therefore, for closed systems at constant volume it will be easier to track internal energy,

whereas for closed systems at constant pressure, we will prefer enthalpy.

1.3 Entropy and the second law of thermodynamics

The first law of thermodynamics establishes the fact that you cannot create energy, which
already places some limits on several important energetic processes. However, there are
other limits that exist within practical systems that do not arise from the first law. An
example of such a limit is the fact that heat flows from a hot to a cold source and not the
other way around. These concepts are governed by entropy (S), which is often visualized
as a measure of a systems disorder or inventory of random information. The second law
states that disorder increases with time or at the very least remains constant. For an isolated

system, the second law can be formulated as:

2 This could include open systems such as boiling water or burning wood in a fireplace as well as
continuous systems like a flow reactor.



ASsystem = 0 [isolated system] (1.10)
For a non-isolated system, the second law only requires that the total entropy of the system
and its surroundings be equal to or greater than zero:

ASsystem + ASsurrounaings = 0 [non-isolated system] (1.11)

Above, we presented ways to measure changes in internal energy (eq. 1.3) or changes in
enthalpy (eqg. 1.6). A similar calculation must be defined to measure entropy. Entropy is

defined by the exchange in reversible heat Qrev during a state change:

Sz dQrev
A'S‘system =5, =585 = f ¢ e (1.12)

S1 Tsystem

Reversible heat (Qrev) is the heat received during a reversible process: a process where all
mechanical energy changes occur reversibly (e.g. without any friction or energy
dissipation) and where all heat is exchanged reversibly (eg. while maintaining equilibrium
with the surroundings and keeping the system at a uniform temperature at all times).
Because of the presence of reversible heat and temperature in equation 1.12, entropy has
units of energy over temperature (e.g. J/K). Of course, reversible heat is a difficult quantity
to measure because no real process occurs reversibly. However, entropy is a state function.
Therefore, a change in entropy between state 1 and 2 is completely independent of the path
taken (Fig 1.2).

irreversible

reversible

reversible

irreversible



Fig. 1.2 Different paths may require different heat and work.
Therefore, for every change from state 1 to state 2, there are an infinite number of paths
both reversible and irreversible. Therefore, one can always find a reversible path to go from

state 1 to 2, and the Qrev added during this path will allow us to calculate AS.

To understand this distinction, consider the following example. We have 1 kg of perfectly
isolated water with a stirrer. We start the stirrer and stir until we have produced 4184 J of
shaft work. After we stop stirring, the water will no longer be moving, but the stirring
energy will have dissipated irreversibly as heat into the water, heating it to 21°C. This is a
completely irreversible process where no heat was added (Qirrev=0). However, we can get
from state 1 (water at 20°C) to state 2 (water at 21°C) by reversibly heating the water with
the same amount of energy as that used in the irreversible process. Therefore, Qrev=4184

J.
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Fig. 1.3 An irreversible and reversible path to the same state.

Because Qrev is dependent on the path taken (a path function) and is used to calculate JS
(a state function), it is usually necessary to calculate the evolution of the system and of its

properties (i.e. V, P, T, etc.). How can we know such properties? Equations of state (EOSs)



can help us define one of these variables as a function of the other two. For this reason,
EOSs such as those mentioned above (e.g. the ideal gas law in eg. 1.5) are sometimes

necessary to calculate Qrev and AS.

1.4 How generating work from heat can be described by entropy

Why have we spent so much time talking about obscure state functions such as internal
energy U or entropy S? As it turns out, these functions are essential for understanding how
we obtain, transport and convert energy. An important example of such a conversion is the
transformation of heat to work. This is the most important work-generating process, and is

the basis for most transportation processes.

The vast majority of work-generating processes are continuous, meaning that they stay or
return frequently to the same state in a cyclical manner. The internal combustion engine is
physically cyclical (i.e., its function involves distinct steps), whereas a plane reactor or gas
turbine is mechanically continuous. However, from the standpoint of the fluid (i.e., the

entity providing the work!), all these work-generating processes are cyclical.

Again, cyclical indicates that you return to the same state. For this reason, we can use a
state variable to describe our system. Since a state variable (let’s call it X) is independent
of paths taken to and from that state, in a cyclical process, this state variable will always
return to its original value (Xo). For reasons that we will see in a second, it’s best to describe
such a path using entropy. Recall our definition for entropy (below is a slightly modified

version of Equation 1.12).



ds = L&e (1.13)

Equation 1.13 is useful to determine the greatest amount of heat that we can extract from a
given cyclic path.

dQrey = TdS = Qrey = [T dS (1.14)
The integral on the right represents the area formed by T(S) on a T-S diagram, which for a

cyclical process is represented on Fig. 1.4.
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Fig. 1.4 A thermodynamic cycle on a T-S diagram

Now remember, this holds only for a reversible process (the best possible scenario). In an
actual process, we will not recover all of this entropy as heat, but will lose it in some other
way (loss of heat to the surroundings, temperature inhomogeneity in the system, etc.).

Because of this:

ds > “2ettal o Qe < J TS (1.14)



Therefore, the actual amount of heat we can recover will always be smaller than the hashed

area shown above.

However, the first law always holds no matter what the process is, and for a cyclic process
the first law becomes:

AU = Q+W=0-Q=-W [cyclic process] (1.15)
Remember, since internal energy U is a state function, it too (just like entropy) must come

back to its initial value (AU = 0!).

Therefore, for a cyclic reversible process, we have:

Wiey = = Qrep = — [ T dS (1.16)
Since Qrev Is equal the maximum amount of work that can be produced during a cyclic
process (Eg. 1.14 and 1.15), the area on the T-S diagram also represents the maximum

amount of work obtainable during a cycle.

To calculate the actual work, recall that 1.15 is always true for a cyclic process. Therefore:

Wactuar = — Qactuar < — f Tds (1-17)

1.5 The Carnot engine

Above, we have discussed how a cyclical process can produce work and be represented on
T-S diagram. In addition, we saw that the area covered on this T-S diagram corresponded
to the reversible work (i.e. maximum work) that can be produced during a cycle. Let’s

think more precisely about what such a cycle would look like. In systems that convert heat



to work, we have a heat source at a high temperature (TH). Generally, we also need to cool
our system to close the cycle and recover our initial state (think of exhaust gases being
cooled in the atmosphere, or the cooling water in a Rankine cycle). In other words, we can

represent any heat-to-work conversion system as shown in Fig. 1.5 A.
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Fig. 1.5 (A) a simplified heat engine and (B) a random T-S cycle for this engine

Such a system can exchange temperature with the hot and the cold source only if it finds
itself in between the two. Knowing this, we can draw a random path cycle on the T-S

diagram (Fig. 1.5 B).

Now, the obvious question is the following: what is the maximum efficiency that could be
obtained by a perfect heat engine operating between Tw and Tc? This is the question
answered by Sadi Carnot when he developed the Carnot heat engine (the ideal heat engine).

Efficiency (n) is usually defined as the work obtained divided by the heat put in at high

temperature:
n= (1.18)
(0)7]
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The maximum amount of work will be obtained for the path that maximizes the hashed
area shown in Fig. 1.5 B. Geometrically, we can see this corresponds to a square (Fig. 1.6

A). This path describes the Carnot heat engine!

Az A Qe Wm Ber A A Qs
T,

Opa =0

Wg_cB
Q=0& 1% DA —

Qrev, (O Qrev,c WC-D

Y

Fig. 1.6 The Carnot heat engine cycle. (A) T-S diagram and (B) P-V diagram. Note that

the shaded area on the PV diagram represents the total work done by the system as well.

The steps in this cycle are:

Step AB: Add heat to expand the gas isothermally at Tw, while doing work.

Step BC: Expand the gas adiabatically until the gas reaches Tc, while doing more work.
Step CD: Remove heat to compress the gas isothermally at Tc, while providing work.
Step DA: Compress the gas adiabatically until the gas temperature rises to Tw, while

providing the necessary work.

To calculate the work and heat that is given/produced at each stage, we need to use the

properties of the ideal gas law.

Reminder: Thermodynamics of ideal gases
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For ideal gases

U=f(T)#* f(P,V) (1.19)
This was demonstrated by the famous joule experiment, and by definition all ideal gases
follow Joule’s law:

dU = C,dT — AU = C,AT (1.20)
where Cv is the volumetric heat capacity (heat capacity at constant volume), which is
constant for ideal gases. Similarly, and by definition, we have:

AH = CpAT (1.21)
From equation 1.7, we have (for one mole of gas):

AU = CyAT = AH — A(PV) = CpAT — A(RT) (1.22)
Which leads to:

Cp—C, =R (1.23)
For ideal gases, it is also useful to define k:

Cp/C,=k=1+R/C, (1.24)
For an adiabatic process, we have:

dU = CydT = dW = —pdV (1.25)

If we separate and integrate we get:

In (:—) = —%m (Z—) =—(k—1)In (Z—) (1.26)
Therefore, for an adiabatic step, using 1.26 and 1.5, we can quite easily derive:

®-=-@)" 1.27)
6= a2
(- a2
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With these relations we can pursue our discussion of the Carnot Engine and calculate the

heat and work that occurs at each step:

Step AB: Isothermal, closed system — Q5 = —W,5 = RTy ln(i—z

Step BC: Adiabatic expansion: U = W = C, (T — Ty)

Step CD: Isothermal, closed system = Q.p = —W.p = RT, ln(i—;

Step DA: Adiabatic compression: U = W = Cy(Ty — T¢)

To calculate efficiency (n), we need to determine the total amount of work obtained and

the heat from the hot source added to the system:

P P
RT ln(—A)—RT In(z2
p = Moot _ ~(WaptWpctWepWp) _ Wap-Wep _ M7 ") RTC p)

QH QH QaB RTy ln(l;—g)

(1.30)

As a side note, you will notice that the sum of all the work terms corresponds to the integral
of the path on the cycle’s PV diagram (Fig. 1.6B). We add a minus sign in front of the total
work done by the system (Wiot) to correct for the fact that from the system’s reference, this
work will be “lost” and therefore be negative. From eg. 1.28, we know that for an adiabatic
reversible process between the same temperatures, the ratios of the initial and final

pressures are constant (Pa/Ps= Pp/Pc):

n=Tc (1.31)

Ty
This is an important result, because it means that for most practical engines, the theoretical
efficiency is not 100%! To approach 100%, we have to maximize the difference between
Tw and Tc. However, for real systems Tc is never lower than 240 K, and is usually around

290 K, which limits any possibilities that are available.
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From the Carnot cycle, we can quite easily deduce the ideal behavior of a heat pump. Heat
pumps consume work and bring heat to a hot source. Heat pumps are being used more and
more to heat houses, but their most common occurrences are in cooling systems such as
refrigerators and air conditioners. If you think about it, an ideal heat pump is simply a

Carnot cycle run in reverse (Fig. 1.7).
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Fig. 1.7 (A) Representation of an ideal heat pump. (B) As a T-S cycle.
We can calculate the efficiency, which is usually referred to as the coefficient of
performance or COP, of a heat pump by analogy to the regular Carnot cycle.

—RTy ln(i—i)

COP,, = —% _ %84 = S — = TH (1.32)
w WpatWcp+WpctWap  _RTy ln(Fﬁ>_RTc l"(FQ) Ty—-Tc
A c

The subscript (W) indicates winter as a heat pump is usually run as such in the winter. In
the summer, the pump is generally reversed and becomes an air conditioner. In this case,

COPs is based on Qc:

Pp
COPs = Onc T e e

WpatWcp+Wpc+W ap —RTy ln(li_A)_RTC ln(i_D) Ty—Tc
B C

(1.33)
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1.6 Real work heat engines

The Rankine cycle

At this point we have explored the efficiency of an idealized heat-to-work or work-to-heat
system. What about real systems? Well we could try to operate this with water and steam
(a common and cheap fluid). If we try to closely replicate what is seen in Fig. 1.6 (A), then
we must operate in the two-phase region, as it is the only way to provide heat to the system
at constant temperature. Such a system, along with the phase boundary, is shown in Fig.

1.8.

__condense Y

L-G

Fig. 1.8 Carnot Cycle in a 2-phase system.
However, in practice, this type of system would imply pumping and expanding a two-phase
system as they further change phases. However, mechanical problems that include
cavitation in pumps and erosion of turbine blades make it impractical to operate these two-
unit operations in the two-phase zone. Therefore, we are forced to extend the system to
make sure the pumping and expansion are done outside the two-phase boundary. Therefore,

water is completely condensed before pumping and steam is superheated (to much higher

15



than the boiling temperature) to ensure that it will not condense during expansion (Fig.

1.9). The resulting system is called a Rankine cycle.

Path 1-2-3-4-5-6-1 represents the ideal Rankine cycle. For safety reasons, a real turbine is
often run with a path closer to 1-2-3-4-5’-6’-1. This is to assure that the turbine operates
well outside of the two-phase region. We can use enthalpy (assuming negligible kinetic
and potential energy contributions) to calculate the efficiency of a Rankine steam cycle.

For the ideal case, we have:

— Qu—0Qc¢ — (HS_HZ)_(HG_HI) (1 34)

n QH (Hs—H>)

We can neglect the energy it takes to compress a liquid, which is very small (Hi=H2), which

leads to:
Hs—H, Hs,—H ..
==—"5 or n=-=—%(amore realistic system) (1.35)
Hs—H, Hs,—Hy
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Fig. 1.10 A Rankine cycle and its corresponding TS cycle

We can see that a Rankine cycle, even an ideal one, has an efficiency that is quite a bit
lower than that of a Carnot engine. This can be improved on a little bit by using one or

more reheat cycles (Fig. 1.11). This is especially helpful when one does not have access to

a stream at a temperature at which to superheat the steam.
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Fig. 1.11 A Rankine cycle with a single reheat cycle and its corresponding TS cycle

The Rankine refrigeration cycle

Like the Carnot cycle, the Rankine cycle can be run in reverse to form a refrigeration cycle
or a heat pump. In this case, the physical constraints are slightly different. Let’s again begin
by imagining the ideal Carnot case within a real fluid (path 1°-2°-3-4’). In practice, it is
preferable to compress a pure gas than a gas liquid mixture, so we shift from 1’ to 1.

Additionally, an adiabatic reversible expansion is not possible to replicate, so in practice
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this is replaced by a simple expansion valve, which is not reversible and therefore leads to

an increase in entropy (see pathway 3-4).

adiabatic-reversible
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Fig. 1.12 T-S diagram of a reversed Rankine Cycle and its representation for refrigerator.

A more realistic overall pathway is therefore 1-2-3-4 with a COPRrefrigeration efficiency of:

lacl hi—h
COPRefrigeration = m = ﬁ (1.36)

For the analogous Rankine heat pump, we have:

lgnl _ ha—h
COPpeqt pump — |th| = ﬁ (1.37)
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The Otto cycle: gasoline engines

Rankine cycles are very useful to understand and calculate the efficiencies of generating
electrical power from heat (e.g. processes in various power plants) as well as heat pumps
and refrigeration cycles. However, they are not very well suited for describing combustion
engines. There are several cycles that are each used to represent different engine types (e.g.
the Otto cycle that describes a gasoline engine, the diesel cycle for a diesel engine, the
Brayton cycle for a combustion gas turbine or turbojet engine), all of which are very

relevant to our current energy use. Let’s briefly go over them, starting with the Otto cycle.

This cycle is used to describe a typical gasoline engine and is generally described as a six-
step cycle between 6 states (Fig. 1.13):
e State 0-1: The gasoline is pulled in and expanded by mixing with air.
e State 1-2: The mixture is adiabatically compressed (causing it to heat up).
e State 2-3: The spark plug ignites the gas, releasing the combustion heat and causing
a large increase in T and P.
e State 3-4: The pressure pushes the piston down, causing an adiabatic expansion and
work creation (reducing T).
e State 4-6: The hot exhaust is removed from the engine. Thermodynamically this is
represented as two steps. First heat removal (to stage 5) and then return of the

cylinder to its original volume (from stage 5 to 6).
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Fig. 1.13 Illustration of the 6 steps of the Otto cycle in a 4 stroke gasoline engine.

Thermodynamically, first (0-1) and last (5-6) steps are trivial and the cycle itself occurs

between stages 1 and 5 (Fig. 1.14).

The steps comprising the thermodynamic cycle are:
A. The adiabatic compression of the fuel mixture, which takes work
B. Heating at constant volume by release of the heat of combustion
C. Adiabatic expansion of the combustion chamber along with the production of
work
D. Residual heat is removed when exhaust gas is discarded (at constant volume
because no compression is applied)
Note that the exhaust and intake are volume changes at constant pressure because no

compression or expansion is applied to the gas as it enters and exits the chamber.
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Fig. 1.14 PV (left) and TS diagrams (right) for the Otto cycle.

We want to calculate the efficiency of the engine, which is defined as the work produced

over the heat of combustion:

w w Qin—CQou
T] - AHcomb - Q_m - Q—mt (138)
We can calculate the heat or work produced at each step:
A. For an adiabatic compression:
Q=0 2 AU, =Q+ Wy =Wy = Cy(T, —Th) (1.39)
B. Heating at constant volume
W=pdV =0 > Qi =Cy(T3 —T,) (1.40)
C. Adiabatic expansion:
Q=0 2 AUsLs = Q+ Wy = Woye = (T3 — T) (1.41)

D. Cooling at constant volume:

w=0 > Qout = Cy(T, — Ty)
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The efficiency can then be calculated as:

n = Cy(T3—T2)—Cy(Ty—T1) — (T3=T2)—(Ta—Ty) (1.42)

Cy(T3—T2) (T3—T2)

Assuming that the gases involved act ideally and because Vi=Va4and V2=V3 (see Fig. 1.14):

T, _ (ﬁ)k_l _ (ﬁ)"‘l _Ts (1.43)

T V2 V3 Ty

Dividing equation 1.42 in the numerator and denominator by Ts, we get:

T
n = A-Tp/T3)—(Ta/T3—T1/T3) _ (A-T2/T3)—(T1/T2—Ta/T3) _ o _ (T/T2—Ta/T3)  _ 4 _ ﬂ(l_ﬁ) —
(1-T3/T3) (1-T3/T3) (1-T/T3) Tz (1—;—2)
3
n=1-2 (1.44)
T

We can introduce the compression ratio (., = V; /V,) and rewrite the efficiency as:

— 1T g _ 1k i W
n=1 T2—1 e Wlthrc—VZ—V3 (1.45)

For modern engines, the compression ratio (r,.) is around 8-9 for modern engines and k~1.3,
the maximum efficiencies are around 45% for an ideal engine, which is much lower than
an ideal Carnot cycle. Because of additional inefficiencies in a real system the efficiency

is actually closer to 20%.

The Diesel cycle: Diesel engines

The Diesel cycle (unsurprisingly) describes Diesel engines which function in a slightly
different way compared to gasoline engines. In gasoline engines, the spark leads to an
explosion of a mixture of compressed fuel and air. This leads to an isochoric (constant
volume) rapid combustion; i.e. a rapid rise in pressure and temperature at constant volume.
In the Diesel engine the diesel fuel is injected after compression of air. The high

temperature of the compressed air ignites the fuel, which combusts more slowly than an
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injection allowing for a simultaneous expansion during combustion (i.e. not isochoric as
was the case as was the case for the gasoline engine).
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Fig. 1.15 Illustration of the 6 steps of the ideal Diesel cycle in a typical Diesel engine.
Specifically, can be described as going through 6 states (Fig. 1.15):

e State 6-1: The fuel is pulled into the engine cylinder expanding the volume at
constant pressure.

e State 1-2: The air is adiabatically compressed (causing it to heat up, same as the
Otto cycle except it’s pure air).

e State 2-3: The diesel enters the chamber and starts burning. This increases the
temperature slowly enough that the piston is pushed back (i.e. a volume increase)
without causing an increase in pressure.

e State 3-4: After the combustion is over, the excess pressure compared to
atmospheric leads the expansion to continue (this time adiabatically), this time

leading to a drop in pressure until fully expanded.
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e State 4-6: The hot exhaust is removed from the engine. Similarly to the gasoline
engine, thermodynamically this is represented as two steps. First heat removal (to

stage 5) and then return of the cylinder to its original volume (from stage 5 to 6).

_ constant pressure fuel addition

Gin / (fuel is injected and burns)
) 2 h @

adiabatic reversible
~~ expansion

adiabatic
_— reversible
expansion

_—-area = work done/cycle

@ ___waste gas
" discarded
D l = g

(6 <+«— exhaust
fresh air —— 1)(5
O O

Fig. 1.16 PV (left) and TS diagrams (right) for the Diesel cycle.

Let’s again calculate the efficiency of the system, which is defined in the same way as the

Otto cycle:
w w Qin—Qout |Q2—3|_|Q4—5|
= =X _ = 1.46
n AHeomp  Qin Qin Q23| ( )

We need to calculate the heat exchanged in steps 2-3 (step B) and 4-5 (step D):

B. For a system with heat exchange doing only PV work at constant pressure we have
(see Eqg. 1.8 and 1.21):
Qin = AU + PAV = AH = Cp(T; — T,) (1.47)

D. For a system at constant volume, we have:

W=pdV =0 2> [Qoul = Cv(Ty —T1) (1.48)
This leads to the following efficiency:
Cp(T3—T2)—Cy(Ty—T1) 1 (Ty—Ty)
_ — 11T 1.4
7 Co(TTo) K (T (1.49)
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To make this dependent on physical parameters of the engine, we can define two
parameters:
e The compression ratio (same definition as the gasoline engine), which describes

the ratio of volumes between the fully compressed and fully expanded engine

cylinder: r, = A (1.50)
V2
e The expansion ratio, which defines the further expansion after the injection of
fuel has stopped: r, = % (1.51)
3
For ideal gases, we can use properties of adiabatic transformations (Eq. 1.27):
v 1/ (k=1) B 1\ k-1
n=3)=E)" - nL=ne)"'->n=7() (152)
v 1/ (k=1) B 1\k-1
=)= - BELe-T=T5(7) (L53)

Therefore, the efficiency becomes:

1 (T4—Ty)
=1- 10T 1.54
n 1 k (T3—Tz) ( S )

With:

5 5 _ B (T3-To) i k—l_(T -T5) i k-1
try | BE) (D) mEaraaye noemayer D) R

Tc
(T3-T3) B (T3-T2) h (T3—T3) (T3—T3)

k-1 k-1

) &)
(T3-T2) 1-T3/T3 T3/Tz-1 (i)k_l (L)k_l
= _ L (1.55)
(T3—T>) 1-T, /T3 T3/Tp-1

Stage 2> 3 is an isobaric transformation (P, = P5) and we can also use that Stage 4->1 is

an isochoric transformation (V, = V;):

Ty _ PsVs _ Vs _Va/Va _Te (1.56)
T, PV, Vo V/Vi Te '
Leading to:

k-1 k-1 k N
N _
(T3-T,)  1-le T Ty T 1T AT (l )

Tc Te Te Tc Te Tc

And an efficiency of:
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n= 1-— %7 (158)

This equation is slightly more complicated than for the Otto cycle. In addition, it leads to
the efficiency being lower for the Diesel cycle if the same compression ratio is used. This
is fairly obvious when comparing P-V diagrams with the same V1 and V2 used for both
cycles (Fig. 1.17, left), where the work produced (represented by the area within the cycle
of the P-V diagram) during the Otto cycle is clearly greater. However, in practice Diesel
cycles can operate at much higher compression ratios (20 vs. 8-9 for gasoline engines),
which actually leads to a higher amount of work produced and a higher efficiency (Fig.
1.17, right). This difference is because a fuel air mixture is compressed in the gasoline
engine and this mixture would self-ignite (before the spark) if compressed too hard. This
is not an issue for the diesel cycle. This leads an ideal Diesel cycle to efficiencies
approaching 60% and in real engines can be a little above 40% (in trucks), which makes
diesel engines the most efficient combustion engines available. However, the injection
process of the fuel leads to local concentration gradients in the cylinder that can lead to
inefficient combustion and the formation of particulates. Gradients are much less of a

problem in the gasoline engine where the fuel is homogenized during expansion.

p v, extra work produced

for the same in the Diesel cycle
compression

ratio

Diesel, high
compression
ratio

Otto, low
compression
ratio

extra work produced
in the Otto cycle

/ Diesel cycle

Fig. 1.17 Comparison of the Diesel and Otto cycles using P-V diagrams for cycles with

the same (left) and different (right) compression ratios.
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The Brayton or Joule cycle: gas turbines and jet engines

Though a Rankine cycle will have the highest efficiency, especially due to the possibilities
of using reheat cycles, its use of an external heat source makes it more complicated than a
cycle that integrates the combustion (internal combustion). Internal combustion systems
notably avoid the use of a heat exchanger network. For this reason, combustion gas turbines
are still frequently built to generate power and can be modeled using the Brayton (also
called the Joule) cycle. The functioning of a gas turbine is almost identical to that of an
airplane’s jet engine and so they can be understood using the same cycle. The only
difference is the way the efficiency is calculated because the output of a gas turbine will
be mechanical work, whereas the output of a jet engine will be the thrust generated by the
additional kinetic energy imparted to the exiting gases. Let’s start by discussing the gas

turbine.

w5 some work is i~
‘ / warm
Y / needed to drive

Y
. the compressor 4 —> ombustion
» [ = ases

} ‘l“/ O rk

e 1__«
v combustlonuw
-\ - chamber (ﬁ

S

———

high pressure

Fig. 1.18 Diagram of a gas turbine.
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The Brayton cycle and by extension the gas turbine are arguably much simpler than a piston

engine. Here the cycle goes through 4 states (Fig. 1.18):

State A-B: air enters the turbine and is compressed by a compressor to a higher
pressure. This can be idealized as an adiabatic compression (Fig. 1.19) where both
P and T rise but there is no increase in entropy because no heat is exchanged.
State B-C: the compressed air is mixed with fuel and burned. The idealized version
of this step assumes that it is a constant pressure heating step, which expands the
volume (Fig 1.19). As a result, P stays constant but VV, T and S increase. The
additional volume of the fuel is ignored because it is much smaller than the air
going through the turbine (this is also assumed—and even closer to reality—in a
jet engine that uses kerosene as fuel).

State C-D: The high temperature gas is then expanded back to atmospheric pressure
to produce work. As a mirror of step A-B this is considered to be an adiabatic (no
change in S) expansion (Fig. 1.19).

Step A-D: Since the exhaust gas will be hotter than air, its release into the
atmosphere is considered as a release of heat to the surroundings at constant
pressure, which brings the gas back to the same conditions as the entering gas (state

A).
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Cin the waste gas
Fig. 1.19 The ideal Brayton cycle’s PV (left) and TS diagrams (right) that can be used to

represent a gas turbine or a turbojet engine.

The efficiency of this cycle will be the excess work generated during expansion compared

to compression over the heat released by the fuel:

n= (Wepl—IWag| (1.59)
|@Bcl

A simple energy balance shows us that this excess work has to be equal to the difference

between the heat given to (Qin) and the heat released by (Qout) the system:

_ |@Bcl-1Qap|
|@Bcl

(1.60)
For both BC and AD steps, we have a system at constant pressure doing only PV work.
Therefore:

_ Cp(Tc—Tp)—Cp(Tp—Ta)
Cp(Tc—TpB)

(1.62)

Recall that for adiabatic steps (like A-B and C-D) we can use relations like Eq. 1.28. We

can also use the fact that P, = P, and P, = Pj, (Fig. 1.19, left):
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@=()"=G)" =) (1.63)

The efficiency becomes:

_(TD—TA)_l_T_A(;_ﬁ*)_ _T_A(;_g_l)_ _T_A_l_(P_A)% (1.64)
n= (Tc-T) Tp (;—2_1) B Tp (;:_;_1) N Tg Py '

This equation tells us that the more you compress the fluid at the first stage, the higher the
efficiency. The limitation is that this also increases the pre-combustion and thus post-
combustion temperature. In practice, material resistance to high temperatures limits the
efficiency to pressure ratios of about 20 (and a theoretical heat to work efficiency of 55-
60%). Furthermore, the initial compression step is done by a compressor which requires
much more energy than a liquid pump and so the compressor efficiency really matters. As
shown on the diagram (Fig. 1.18), this compressor directly employs a large fraction (about
60%) of the output work produced to compress the incoming gas. Compressor efficiencies
can reach about 80%, which leads to real gas turbine heat to work efficiencies of around

40-45%.

g axial flow compressor

air = A _____ A - — high velocity
in =» —> exhaust gases

t turbine provides work
to drive the compressor
high pressure

Fig 1.20 Diagram of a jet (or turbojet) engine.
The jet (or turbojet) engine works in exactly the same way. The only thing that changes is
the shape of the turbine, which becomes narrower as the gases pass through it to maximize

the velocity of the exiting gases to maximize propulsion. The concept of efficiency is also
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also slightly different because in a jet engine, we care about how much propulsive power
we generate not just work. To get to the overall efficiency of a jet engine, it is useful to
break it down into the thermal efficiency, which this time describes the kinetic energy
received by the fluid as opposed to the work (Eg. 1.65) and the propulsion efficiency, which
is the ratio of propulsive power produced divided by the rate of production of this kinetic
energy (Eqg. 1.67)%:

2 2
_ (MairoutVout—Mair,inVin)/2

Nthermal = Qin (1.65)

Since all of the net work being produced is just used to accelerate the gas, this is equivalent

to the Brayton cycle efficiency for the gas turbine:

Nthermat = 1 — (166)

propulsive power

R 1.67
T]propulswe rate of production of propulsive kinetic energy ( )

Where the rate of production of propulsive kinetic energy is simply the net kinetic energy
received by a given mass of air per time (mg;,.): If we neglect the amount of fuel added to
the incoming air (Myir in = Mair oue = Mair), We have:

__ propulsive power 1.68
r]propulswe mair(vgut_vizn)/z ( : )

The overall efficiency is:

Noverall = nthermalnpropulsive (169)
Propulsive power is defined as the product of thrust and flight speed (v;;45.), Which if
equivalent to the incoming airspeed is:

propulsive power = Vfygp Thrust = vy (Mgir (Vour — Vin)) (1.70)

3 This short discussion on aircraft efficiency was adapted from the notes of
“Thermodynamics and Propulsion” an MIT Aerospace class by Prof. Z. S. Spakovszky
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_ Vin(MairWout—vin)) — 2Vin __ _ 2 (171)

Npropulsive = —; 2 2 - v
prop mai?‘(vout_vin)/z vout"’”in 1+ .;,ut
mn

This means that the propulsive efficiency of an airplane is the highest when v;,, = v,,;,
which is approached when the speed of the airplane is high. However, this is the point at
which thrust is low (Eg. 1.70). This leads airplanes to be much more efficient at cruising
altitudes rather than take-off.

Overall efficiencies of jet engines therefore combine both numbers discussed above. None
of this discussion includes effects like air resistance which requires engines to maintain
fairly high thrust even at high speeds. For this reasons, pure turbojet engines have
efficiencies slightly above 20%. More modern engines use a so-called air bypass system,
where a good deal of air that is compressed does not go through the combustion zone. This
reduces v,,; — vin, Which increases the propulsive efficiency but also increases mg;,
significantly, which increases thrust. These design improvements along with
improvements in materials in engines that allow post combustion temperatures to reach

1550°C* has allowed modern jet engines to reach efficiencies close to 40%?°.

4 Peter Spittle 2003 «Gas Turbine Technology» Phys. Educ. 38 504
®> Commercial Aircraft Propulsion and Energy Systems Research
Reducing Global Carbon Emissions, National Academies Press (2016).
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1.7 Exergy

At this point, we have been talking a lot about how to generate work. One useful concept
is to know what is the maximum amount of work that can be obtained for a given process
(e.g. a system going from state 1 to state 2). This is important because it will allow us to
calculate a true efficiency for our work producing process. The maximum obtainable work
is often referred to as “availability” in the US with a symbol of b or B, and as “exergy” in

Europe. We will refer to Exergy and use the symbol WEex.

Change of exergy between two states

To calculate Wex let’s take a system going from state 1 to state 2:

Ty Py Ept By Vy T2 P2 Epa Exo Vo o
4 ! &
Wex, 12
state 1 e state 2
W W,
T\‘ Po Ex‘u . Em =0
A 4

same final state

Fig. 1.21 Exergy produced from a system going from State 1 to State 2 within an
environment at state 0.
The system at both State 1 and 2 can exchange with the environment, which is at the ground
state (state 0). The maximum amount of work obtainable from either state 1 or 2 is obtained
when they are brought down to complete equilibrium with the environment while

undergoing whatever change in internal energy (U). Along the way, to obtain the maximum
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amount of work, you never reject any heat to the environment at a T>To. In fact, you always

use a Carnot engine to bring heat to the environment at To. For system 1:

g:;g‘”ha;VSeYsE‘em dW sh extra work obtainable
‘ andyE dWW because the system

~ expands against the

atmosphere which is
S at pg
/

— .

dQ
heat leaves the”

systemat T
Q ’ dwo

system is now in
_equilibrium with

the surroundings
heat enters the andhas E;=E, =0
surroundings — -

atTy, not T

this is called the ground state _

p
ToPo No work can be gotten from it

Fig. 1.22 Exergy production for system 1 brought to the ground state.

Since a Carnot engine is reversible, we know how much heat is released to the environment
(eq. 1.13):

d|Qol = TodS (1.72)
From the first law, we know that (eq. 1.1):

dE = dQ, — dW = TydS — dW = TodS — dWs, — podV — dW, (1.73)
Some of the work that is produced is needed to push back the atmosphere (podV) and
therefore the only useful work (or exergy dWEex) is (using the previous equation):

AWy, = dWs, + dW, = —dE + T,dS — podV (1.74)
Remember that E= U+Ep+Eki. By definition, we consider the ground state has no potential
or kinetic energy. Therefore:

Wex1-0 = —(Up — E1) + To(So — S1) = po (Vo — V1) (1.75)
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For a system with no changes in kinetic or potential energy:

Wex150 = —(Ug — Uy) + To(So — S1) —po(Vo — V1) (1.76)
Notice that for a system where a state change is brought back down to the same state (this
is the case for most fuel conversion processes, where the fuel enters and exits more or less
at To and Po, which are Tsur and Pam), we have (remember G=U-TS+PV):

Wex1-0 = —AG, (1.77)
Coming back to our change from State 1 to State 2, we have (using eg. 1.75):

WEx,1—>2 = WEx,1—>O - WEx,2—>0 = _(Ez - E1) + To(sz - 51) - Po(Vz - V1) (1-78)

Work in a flow system

In a flow system, the principles are largely the same as in a batch (system described above).
At each step, any heat released at temperature T can be extracted by use of a Carnot Engine

to bring it down to To (Fig. 1.23).

dw

-Tp

. eventually at
originally at | . surroundings
Ty Py Uy t i To Po Ug

Fy 11 0 Y0 Yo

Carnot ',O ‘dwo

engine’

dQ,
surroundings ‘

To Po Zo

Fig. 1.23 Exergy calculation in a flow system.
The only difference is that we can use enthalpy (instead of internal energy), which, at
constant pressure, already accounts for the “pushing back of the atmosphere” (see equation
1.8). By analogy with equation 1.75, we have:

Wexi1-0 = —(Hg — (H + E, + Ey)1) + To(So — S1) (1.79)
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For a change from state 1 to 2 (and assuming the absence of kinetic and potential energy
changes), we have:

Wex1-2 = —(Hy — Hy) + To(S2 — $1) (1.80)
Given how free energy is related to enthalpy (G=H-TS), it is easy to see how Equation 1.78

can be found for a flow system as well.

Work lost in a real process

Exergy measures the maximum amount of work that can be produced in an ideal system,
but can we measure the actual amount of lost compared to the exergy? Let’s see. A change
in energy from State 1 to 2 (AE1-2, this is the same as in the ideal function because E is a
state function!) will release actual work and heat:

AE;_; = Qactuat to = Wactuat to = ToASgyrr. — Wshaft,actual —po(Vo — V1) (1.81)

Surr. surr.

We can then use this equation and equation 1.78 to calculate the work lost in an actual
process:

Wanost = Wex1o2 — Wenastactuar = To(Sa — S1) + ToASsyrr. = To(ASsys. + ASgyrr) = ToASsor. (1.82)
What does this mean? Well, in an ideal system the total entropy production is zero. We
knew that already! The important point is that the as,,, will be the same for an ideal and
real system (S is a state function!). All the work lost has to do with the surroundings! In an
ideal system, the surrounding’s entropy change is equal to that of the system, and the total
entropy change is zero. In a non-ideal system, non-ideal events (heat transfer, friction, etc.)

increase the entropy change of the surroundings, leading to an overall gain of entropy.
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1.8 Electrical machines

In practice, heat to work is not the only way to generate mechanical work. In fact, in day-
to-day life, you are probably more familiar with seeing mechanical work being created
from electricity. For a variety of reasons—notably their efficiency, convenience and their
compatibility with electricity that is produced renewably—already omnipresent electrical
motors are likely to become even more frequent. Since you are chemists/chemical
engineers and not electrical engineers, I will not (nor am | qualified to) give you an in-

depth overview of electrical motors but will just review their basic qualitative principle.

In electric motors, electric currents are used to create a first electromagnet. This first
electromagnet is combined with a second magnet that is either a permanent magnet, another
electromagnet or a magnet that is created by induced current (permanent magnets or
induced current magnet are both found in electric cars for example). The electromagnetic
force (Lorentz force) exerted by the magnetic fields is used to create mechanical work (e.g.
by turning a rotor). If you have ever used a magnet to push or rotate another magnet, you
can easily visualize how magnetic fields can be used to create work. Just to give you an
idea of how they work, I will describe two common types of motors, a direct current (DC)
brushed motor and an alternating current (AC) induction motor.

In a brushed DC motor (Fig. 1.18), the stator is either a permanent magnet or an
electromagnet. The brushes allow the current (I) to flow through a coil (or coils) in the
rotor to create a magnetic field that interacts with the stator. These two magnetic fields
field will create a force that pushes the rotor (Fig 1.18, A-B). If this field on the rotor was

static, it’s easy to see how the rotor would get stuck as it would rotate to align its south
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pole with the stator’s north pole (Fig. 1.18, A-B). However, the break in the commutator
allows the current to reverse the field on the rotor and keep the rotation going (Fig. 1.18

Q).

s

Fig. 1.18 Functioning of a brushed DC motor (modified from Jared Owen’s video on
youtube®, | encourage you to watch it). Panels A-C represent different stages of the
rotation. Panel C represents the state of the rotor right after passing the break in the

commutator, which switches the direction of the current and reverses the magnetic field
of the rotor.
In an AC induction motor, AC current (typically 3-phase) is run through the stator using a
particular winding pattern that induces a rotating magnetic field (Fig. 1.19A). Any

changing magnetic field, will induce a current in a conducting material within that field.

6 https://www.youtube.com/watch?v=CWulQ1ZSE3c
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As a result, the rotor will see an induced current flowing through it (Fig. 1.19B). Since any
current (induced or not), will create its own magnetic field, this will result in two magnetic
fields with a force exerted between them. As a result of this force, the rotor will turn (Fig.
1.19C). However, the rotor rotation speed (Nrotor) Will always be slower than the stator
speed (Ns). This difference in speed, known as slip, is what controls the torque of the motor

because the difference drives the force between the magnetic fields.

INDUCED ELECTRICITY

Fig. 1.19 The general concept of an AC induction motor (this figure is again adapted
from a very nicely done youtube video by LearnEngineering’, which | encourage you to
watch). A. A particular winding pattern in the stator combined with an alternating 3 phase
current (i.e. the current direction, shown by the blue arrows periodically reverses) induces
a rotating magnetic field. B. The changing magnetic field induces a current through the
rotor, which creates its own magnetic field. C. The force created by these two magnetic
fields induces a rotation in the rotor.

" https://www.youtube.com/watch?v=AQqyGNOP 3o
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Beyond these exact principles, the important point is that electrical motors/generators are
largely devoid of complex moving parts and suffer from minimum losses through friction
or heating. The efficiency of electrical motors is typically very high. In ideal conditions,
this efficiency is well above 90% even in practical settings. In fact, the United States Code
of Regulations has even regulated minimum efficiencies for electrical motors at above
around 80% for small motors (power < 1HP, i.e. typical motors in a house such as a mixer
or a fan) to around 95% for large motors (several hundred HP, typical of an electric car, at

peak efficiency)?®.

These values are well above what is seen for any practical heat to power systems, especially
those seen in individual or even large-scale transportation. If this is the case, why are we
still using fossil fuels? The answer has to do with energy density. Electrical energy carriers
(i.e. batteries) have a far, far lower energy densities than hydrocarbons and other fossil
fuels (Fig. 1.20). Plainly, this means it takes far more weight and volume to carry energy
stored in batteries compared to the energy stored in the chemical bonds of hydrocarbons
(or renewable fuels for that matter). This has been the main challenge in the development
of electric cars, which still struggle with range, and has made the development of electric
planes practically impossible at this stage. The efficiency of batteries is not the problem as
their charge/discharge can reach 90% or more. Their longevity and cost have been a
challenge but has rapidly improved. Instead, the greatest challenge, remains to have an
electric energy carrier that has a sufficient energy density and still provide electrical work

efficiency.

8 https://www.ecfr.gov/current/title-10/chapter-11/subchapter-D/part-431
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Selected Energy Densities
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Fig. 1.20 Mass and volumetric energy densities of various energy carriers including

hydrocarbons (blue), biobased (red) and batteries (green).

Given that electrical motors are so efficient and chemical fuels are so energy dense, a
potential solution has been to combine the advantage as both by using these fuels to create
electrical work. This idea is the working principle of a fuel cell. We will discuss their

operation and especially their limits below.
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1.9 Fuel cells

The goal of fuel cells is to huge high energy carriers like fuels to generate electrical power
directly (i.e. without going through heat). The basic principle is that fuel combustion
reactions are redox reactions and thus exchange electrons. If this exchange of electrons can
be channeled instead of occurring directly between the molecules, it can be used to generate
an electrical current. Let’s take hydrogen combustion as an example:

Hy + 0, = Hy0 (1.83)
In a combustion, electrons are exchanged through a series of collisions involving many
elementary reactions to make this overall reaction. But in all of these elementary reactions,
electrons are exchanged directly. To make the electron exchange explicit, we can split this
overall reaction into two half reactions (Eq. 1.84 and 1.85). This is exactly what occurs in
a hydrogen fuel cell.

H, = 2H* + 2e~ (1.84)
~0, + 2H* + 2¢™ = Hy0 (1.85)
Spatially segregating these two reactions in the right system can force the electrons to flow
through an external circuit thus generating a current. This separation is done by connecting
the location of these two half reactions through one medium that only allows the flow of
electrons (an electrical conductor) and one that only allows the flow of ions but not
electrons (an electrolyte). A simple example of this would be plunging two platinum
electrodes connected by a wire into an aqueous sulfuric acid solution and bubbling
hydrogen and oxygen close to each one of the electrodes (Fig. 1.21 A). The protons can
flow through the sulfuric acid (as an H2SOa4 solution is already filled with H*) and the

electrons can flow through the wire, but not vice-versa. If a load is introduced along the
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path of the flowing electrons (e.g. the lightbulb in Fig. 1.21 A), these electrons will power

the load (making the light bulb glow).
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Fig. 1.21 Fuel cell representation. A. A basic fuel cell and B. A more realistic fuel cell

schematic.

A more realistic cell configuration (Fig. 1.21 B) will feature porous electrodes and a

controlled flow of reactants over this porous structure. The electrolyte must be designed to

minimize resistance (which is much more significant than electron conduction through a

metal) and maximize durability. Resistance is typically minimized by making the

membrane very thin. A big challenge to durability is leakage and/or evaporation of the

electrolyte. For this reason, polymer electrolytes, solid acids, solid oxides, and even molten

salts have been used (the last two examples being high temperature fuel cells). However,

even with all of these features, the fundamental principles remain the same as the simple

fuel cells depicted in Fig. 1.21 A. Below, we will review the fundamental thermodynamic

principles that control the maximum performance of fuel cells.
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Thermodynamic potentials

Beyond the physical interpretation of the first law as heat and work, another (more
mathematical) interpretation of the first law is that it describes the internal energy function
(V) as a function of independent variables S and V. For completeness, we can also consider
the case where there is a change in number of moles (N), which goes beyond the case of an

“isolated system” that we used before.

ou

dU(S,V,N) = (E)V,N ds + (Z—Z)&N dv + (Z_sz,)s,v dN = TdS — PdV + udN  (1.86)

The left-hand side of the equation (with partial derivatives) arises purely from mathematics
and would be true for any equation. The right-hand side is based on the definition of the
first law and the thermodynamic definitions of temperature, pressure and chemical

potential (u):

(Z_Z)V'N =T (1.87)
(Z_ls])s,,v =—P (1.88)
(3—”)S,V —H (1.89)

The independent variables used to describe U are not very practical for two reasons. First
they are extensive variables and second, concepts like entropy are fairly abstract and
difficult to measure (unlike for volume, pressure or temperature, there are no entropy
meters). Extensive variables are variables that depend on the size of the system and cannot
be changed without modifying the system, whereas intensive variables (i.e. that don’t
change with the size of the system) like T and P are fairly easy to modify during an

experiment.
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Fortunately, there is a mathematical way of defining functions that retain all of the
mathematical information of the original function but depend on alternate independent
variables: Legendre Transformations. I won’t go into the demonstration of why the original
information is retained, but the actual transformation is fairly straightforward. If we take
the basic differential of PV and apply the chain rule:

d(PV) = PdV +VdP (1.90)
Rearranging and switching signs:

—PdV = —d(PV) + VdP (1.91)
which if we insert into equation 1.83:

dU = TdS — d(PV) + VdP + udN (1.92)
Rearranging, we obtain the definition of enthalpy:

d(U + PV) = dH = TdS + VdP + udN (1.93)
Here, we how enthalpy emerges naturally from a mathematical transformation, which
complements the physical explanation we introduced earlier.

We can do the same transformation again by taking the differential of TS:

d(TS) = TdS + SdT or TdS = d(TS) — SdT (1.94)
Doing the same transformation on equation 1.90, we get the definition of free energy (G):
d(U + PV —TS) = dG = —SdT + VdP + udN (1.95)
where we now have a thermodynamic potential (the name given to the properties U, H, and
G), that is dependent on independent variables P and T, which are far more practical to use.
As we will see, free energy is particularly important when trying to understand fuel cells.
There is fourth potential, which comes from applying Eq. 1.94 on the first law directly (Eq.

1.86), which leads to the so-called Helmholtz potential (F):
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d(U —TS) = dF = —SdT — PdV + udN (1.96)

Physically, enthalpy could be understood as internal energy (i.e. the energy needed to
create the system) plus the work (PV) needed to make room for it. Similarly, —T'S can be
understood as also subtracting any energy provided to the system by the environment.

These four potentials and their associated physical interpretations are summarized in Fig.

1.22.

—1S

( )
Internal Helmholtz
energy free energy

F=U-TS
U = energy needed to F = energy needed to create
create a system a system minus the energy

provided by the environment

’ ' Gibbs
Enthal
nthalpy G free energy

+oV

H=U+pV G=U+pV-TS
H = energy needed to create| G = total energy to create a
a system plus the work system and make room for
needed to make room for it | it minus the energy provided

by the environment
\ J

Fig. 1.22 The four thermodynamic potentials obtainable through Legendre transformation

of the first law.

Maximum fuel cell efficiency and voltage

As we will see, Gibbs free energy will allow us to calculate the electric work potential of
a fuel in a fuel cell system. Let’s use the first law on a fuel cell system, where we imagine
a fuel undergoing a change in internal energy, which releases heat and work (both PV and

electrical). We can adapt our formulation of the first law from Eg. 1.3 for this purpose
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(replacing Wepq e With Weeceric @s there are no moving parts in a fuel cell). We also use
the differential form:

AU = dQ + dWectric — dWpy (1.97)
If we imagine a reversible transformation (best case scenario). We can replace dQ with
dQ,., = TdS. We can also use PdV for volume work. Finally, we can add a negative sign
in front of electric work as the fuel cell will (presumably) always be producing work, not
receiving it.

dU = TdS — dWqectric — PAV (1.98)
With the definition of free energy (G = U + PV — TS, Eq. 1.92):

dG = dU — SdT — TdS + PdV + VdP = —SdT + VdP — dW,;,ceric (1.99)
For a system at atmospheric conditions (constant T and P), we get:

dG = —dWeieceric (1.100)
In other words, for one mole of fuel operating at constant temperature and pressure (which
fuel cells, typically do), the reversible work that could be obtained from a fuel cell can be
calculated as:

Weiectric = —AGrxn (1.101)

This definition, can now allow us to calculate the efficiency of a fuel cell, which would be:

T] _ Welectric (1102)

 Total energy
What is the total energy available in a fuel? It corresponds to the change in internal energy
when you burn the fuel (which will be negative) added to the energy required to make room
for the resulting products in the surroundings (which will be positive), which, if at constant

pressure is equal to the enthalpy (AU + PAV = AH):

n = Z2CRXN. (1.103)

—AHgrxn
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At 25°C and 1 atm, hydrogen oxidation (Hz2 +1/202 = H20) has a AGgxy = —237 kJ/mol

and AHgyxy = —286 K]/mol, leading to a reversible efficiency of 83%.

One caveat® to this efficiency expression is that in certain special cases, it may not be
appropriate to use. Indeed, in certain special cases, it can lead to efficiencies over 100%.
Let’s understand how. The definition of free energy can be rewritten as a function of
enthalpy:

G=U+PV—-TS=H-TS (1.104)
which, at constant temperature becomes:

AG = AH — TAS (1.105)

We can use this result to rewrite the efficiency equation found in Eq. 1.103:

—-AG AH —TAS TAS
_ RxN _ AHpxn RXN _ q _ Z22RXN (1.106)

—AHgrxNn AHRxN AHRxN

The enthalpy of any reaction that releases energy will be negative. The change in entropy,
though usually negative, can be positive for some reaction. This would lead to efficiencies
over 100%! Are we creating energy in such cases? Of course not, this would violate the
first law. Instead, what this means is that in cases where entropy is positive, the system
would be receiving heat from the surroundings to remain at constant temperature. This heat
could, under these conditions, be turned into electrical work. For these special cases, this
additional heat should be included in an efficiency calculation, which leads to the trivial

case where the efficiency is equal to unity.

n= Welectric  _ Welectric = “AGRXN = AHRxN-TASRXN 1 (1104)

Total energy Energy from RX+heat received - —AHRxN+TASRxN - AHRxN—-TASRxN

9 This discussion is based on the article: A. E. Lutz et al. International Journal of
Hydrogen Energy 27 (2002) 1103-1111.
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In practice, these reversible efficiencies are further limited by two further effects. The first
is the voltage efficiency, which captures the fact that the true voltage of a fuel cell is lower
than reversible thermodynamic voltage (see below). The true voltage depends on the
current drawn from the fuel cell, and the two are inversely proportional, meaning that fuel

cells are most efficient at low load. The second is the fuel utilization efficiency. Due to

kinetics not all the fuel entering the cell will be used. Some fuel might remain unconverted
and exit the cell while other fuel might undergo side reactions that do not contribute to
producing electricity. This is a challenge in cases when the load is not constant. For
example, maximum load requires excess fuel, that might be wasted at lower load... This
requires a careful control system to apply at so-called constant stoichiometry conditions.
In practice this leads to efficiencies that can approach 80% at low current densities but can

drop to 50-20% at higher current densities.

Reversible voltage

Similarly, we can use the free energy to calculate the reversible voltage that can be
produced by a given reaction in a fuel cell. The electrical work done by moving a charge
(q) is proportional to this voltage or electrical potential (E):

Weiectric = qE (1.104)
If this charge is carried by electrons, we have:

q =nF (1.105)
where n is the number of moles of electrons transferred and Fis Faraday’s constant. With

Equations, 1.104, 1.105 and 1.101, we get:
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which rearranges to (for standard temperatures and pressures):

E® = — % (1.105)
If we again take the standard Gibbs free energy of hydrogen oxidation (-237 kJ/mol), we
get 1.23 V. In practice, the voltage will be even lower, meaning to get any kind of
reasonable voltage (starting a car—much less load than powering a car!—takes 10 volts),
you need to stack tens sometimes hundreds of fuel cells. For example, Toyota’s Mirai car
which is based on hydrogen fuel cells has 370 stacked fuel cells and an expected range of

700 km. Tesla cars typically have a range of 500-550 km with significant more battery

weight. Of course, we do not yet have a hydrogen distribution network...
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